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Executive Summary

This research aims to develop the methods and understanding needed to incorporate

time and loading variable dependent environmental effects on fatigue crack propagation

(FCP) into computerized fatigue life prediction codes such as NASA FLAGRO. In

particular, the effect of loading frequency on FCP rates in a + I_titanium alloys exposed to

an aqueous chloride solution is investigated. The approach couples empirical modeling of

environmental FCP rates with corrosion fatigue experiments.

Three different computer models have been developed and incorporated in the DOS

executable program, UVAFAS. A multiple power law model is available, and can fit a set

of fatigue data to a multiple power law equation. A model has also been developed which

implements the Wei and Landes linear superposition model, as well as an interpolative model

which can be utilized to interpolate trends in fatigue behavior based on changes in loading

characteristics (stress ratio, frequency, and hold time).

Ti-6A1-4V in aqueous chloride was chosen as the material/environment system

utilized to test the computer models. Ti-6A1-4V was chosen because it is the most studied

a ÷ 13titanium alloy, with some data available in the literature. Ti-6A1-4V was also chosen

because of the complex, time dependent fatigue behavior exhibited by the alloy in NaC1

solution. Unfortunately, sufficient literature data were not available to test the computer

models.

In order to generate data to test the computer models, environment assisted cracking



ii

experiments were conducted on Ti-6AI-4V in aqueous chloride. Constant crack mouth

opening displacement rate experiments were conducted on fracture mechanics compact

tension specimens of Ti-6A1-4V in the mill-annealed, extra low interstitial (ELI) condition

in moist air and a 3.5% NaCI solution at a fixed electrode potential of-500 mVsc E. The

fracture toughness of the material (78 MPa4"m), as well as the stress corrosion cracking

susceptibility of the alloy were determined. ELI grade Ti-6A1-4V exhibits a greater

resistance to stress corrosion cracking than standard Ti-6A1-4V. 1he threshold stress

intensity for crack initiation (Krn) in NaC1 is between 48 and 55 MPa4"m depending on

loading rate. The ELI alloy also exhibits a slower stress corrosion crack velocity (< 10 .5

mm/sec) than less pure Ti-6A1-4V.

The fatigue crack propagation rates exhibited by Ti-6A1-4V (ELI) are enhanced two

to fourfold in NaC1 compared to moist air. The ELI grade in 3.5% NaCI(-500 mVscE)

exhibits da/dN which mildly increases with frequency (f) for constant AK levels of 12.5 and

25 MPa4"m, and frequencies in the range of 0.03 to 40 Hz. Specifically, da/dN is

proportional tof 0_ to0.2 Unlike standard Ti-6A1-4V, the ELI grade does not exhibit the

frequency "crossover" effect for AK values below 25 MPa4"m, due to the increased stress

corrosion cracking resistance of the ELI grade. For frequencies less than 200 Hz, a

frequency crossover is likely to occur only at a AK level above 25 MPa4"m.

The closure levels exhibited by ELI Ti-6A1-4V are consistent with plasticity induced

crack closure, and are independent of environment. Closure levels similarly equal 0.3 for

fatigue crack propagation in moist air, 1.0% NaC1 (-500 mVscE), and 3.5% NaC1 (-500

mVscE) at AK levels above 10 MPa4"m. Changes in frequency in the range of 0.03 to 40 Hz
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andtheassociatedchangesin exposuretimehavenoeffectonclosurelevelsfor AK values

of 12.5 and 25 MPa4"m in 3.5% NaCI. For Z_K values below 10 MPa4"m, closure levels

significantly increase as AK decreases, perhaps due to roughness or oxide-induced closure.

Two separate computer models in UVAFAS were applied to describe fatigue crack

propagation rates in Ti-6A1-4V in an aqueous NaC1 solution. The Wei and Landes linear

superposition model is effective for modeling the effect of loading frequency on fatigue

crack propagation rates in standard grade Ti-6A1-4V in 3.5% NaC1 for AK values where

I(m_xexceeds K_. The linear superposition model is not effective for ELI grade Ti-6AI-4V

due to the increased stress corrosion cracking resistance of the alloy.

An interpolative model reasonably describes the effect of stress ratio (R) on FCP

rates in Ti-6A1-4V (ELI), as well as the effect of frequency on fatigue crack propagation rates

in standard and ELI grade Ti-6AI-4V. The model interpolates the effect ofR andfon da/dN

within the range of the establishing data base. The ability of the model to predict fatigue

data for load characteristics outside the data base has not been tested, and is likely to be poor.

The linear superposition and interpolative models have been tested and effectively

model fatigue crack propagation rates in certain material/environment systems; these models

can be incorporated in NASA FLAGRO. These empirical models, however, are only

applicable to certain material/environment systems where substantial data exist. They cannot

be used for widespread prediction of environmental fatigue behavior.
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Chapter 1: Background

1.1 Problem

Coupling an aggressive environment with cyclic plastic deformation can significantly

reduce the fatigue life of an aerospace alloy. Environmental effects, however, have not

adequately been incorporated in computer life prediction codes such as NASA FLAGRO,

which addresses fatigue crack propagation (FCP) from the fracture mechanics damage

tolerance perspective. NASA FLAGRO describes environmental enhancements of FCP rates

on a material/environment case-by-case basis. Using data to describe environmental effects

on fatigue behavior, however, requires extensive information and is useful only for well

characterized material/environment systems.

This research seeks to develop the methods and understanding to incorporate time

and loading variable dependent environmental effects on fatigue behavior in NASA

FLAGRO. This research seeks to test the Wei and Landes linear superposition model and

an interpolative model, and to suggest improvements to these models based on an improved

understanding of the time dependencies which affect environmental fatigue crack

propagation (EFCP) in structural alloys. In particular the alloy Ti-6A1-4V is studied in the

mill annealed (MA), extra low interstitial (ELI) condition due to its complex, time-dependent

environmental fatigue behavior.



1.2 Introduction

1.2.1 Fracture Mechanics Methodology

Fracture mechanics provides an effective methodology for predicting the damage

tolerant fatigue life of metallic alloy components. This approach is critical because structural

alloys and components contain defects which eliminate the crack nucleation stage of fatigue

life. The approach relies on the concept of similitude in order to utilize laboratory data to

predict the fatigue life of a component.

Figure 1.1 illustrates the fracture mechanics approach for describing FCP. FCP rates

are measured in a laboratory experiment using precracked specimens according to ASTM

standardized procedures.' The crack length (a) is measured as a function of load cycle

number (N). These data are analyzed to determine the average fatigue crack growth rate per

unit cycle (da/dN) as a function of applied stress intensity range, AK. AK is defined as Kmax

- Km_,, where _ is the maximum applied stress intensity and K_i n is the minimum applied

stress intensity for a given fatigue load cycle.

Paris experimentally demonstrated the validity of the similitude concept, which states

that equal FCP rates are produced by equal stress intensity ranges, regardless of the load,

crack size, and specimen geometry. 2 Pads demonstrated this concept for metallic alloys in

moist air. The concept was extended by Wei and coworkers to include corrosion fatigue. 3-4

The concept of similitude allows the integration of laboratory data to predict the fatigue life

of a structural component. If da/dN is written as a function (f) of AK, the life of a

component can be calculated as follows:
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Figure 1.1": Schematic illustratingfracture mechanics approach for describing FCP and
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(1.2)

where Nf is the number of cycles to failure, ao is the initial crack size, and af is the final crack

size. Equation 1.2 predicts the lower plots in Figure 1.1.

1.2.2 NASA FLAGRO Software

The fracture mechanics approach is incorporated in computerized damage tolerant

fatigue life prediction codes such as NASA FLAGRO. NASA FLAGRO provides an

automated method for calculating stress intensity factors, computing critical crack sizes from

fracture toughness considerations, and calculating the fatigue life of structures which contain

crack like defects. 6 This program includes an extensive library of stress intensity solutions

for various geometries and loading, and extensive tabulation of material data in the form of

da/dN versus AK and the stress ratio, R (R = I_idKmJ.

NASA FLAGRO describes fatigue crack growth rates with a modified Forman

Equation of the form:

_¢ (1-R) 1 - (1 -'R')K c

where Kc is the critical value of the stress intensity and AKth is the threshold value of the
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stress intensity range. C, n, p, and q are empirical constants, and fc is a function used to

describe the effect of plasticity induced crack closure.

Crack closure is a phenomena associated with premature contact of fatigue crack

surfaces upon unloading at K levels higher than K_in. 7 Since the crack surfaces touch at a

K level, K_, higher than K_in, there is a reduced driving force for fatigue. FCP is then

controlled by AK_ff, where AK_fr = K_x - K_l. Loading below Kcl to I_i n does not add

additional plastic strain, and thus no fatigue damage. This behavior is illustrated in Figure

1.2, and was initially referred to as plasticity induced closure. 7 Material that has been

permanently deformed in the crack tip plastic zone becomes the wake of the advancing crack

and interferes on unloading. 8

Shown in Figure 1.3 is an example of the NASA FLAGRO Forman Equation fit to

fatigue data for 300 M steel. Data for a R of 0 were fit empirically, while the model

(Equation 1.3) was used to predict da/dN versus AK at higher and lower stress ratios. The

predicted effect of R agrees with measurements. The data and crack growth rate model used

in NASA FLAGRO have focused on FCP in benign moist air, where da/dN is only a

function of AK and R. Load characteristics such as frequency 0 c ), wave form, and hold

time (x) do not affect FCP in inert environments, often including somewhat aggressive moist

air.

1.2.3 Environmental Effects on Fatigue Crack Propagation

Aggressive environments significantly increase FCP rates in structural alloys. 5,9

Examples are iron and nickel based superalloys in high pressure gaseous hydrogen, high

strength alloy steels in water vapor, as well as aluminum, titanium, and ferrous alloys in
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Figure 1.2: Schematic illustrating crack closure during fatigue crack growth. Crack faces

contact at a positive load greater than Prom(a), resulting in a lower driving force for fatigue,

AK, fr (b). After Anderson. I°
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aqueous chloride solutions. This is particularly true for environments capable of producing

atomic hydrogen through reactions with the metal: :2 Figure 1.4 shows an extreme example

of the deleterious effect of environment on fatigue behavior for 4130 steel. Relative to FCP

in vacuum, da/dN is enhanced by up to three orders of magnitude by gaseous hydrogen or

NaC1 solution.

Unlike FCP in inert environments, environmental effects on fatigue behavior are

influenced by a wide range of mechanical, metallurgical, and chemical variables: ,13-14

Mechanical and metallurgical variables include loading frequency, loading wave form, crack

size, crack geometry, alloy composition, stress ratio, and yield strength. Chemical factors

include electrode potential, solution pH, ionic composition, impurity content, conductivity,

temperature, and halogen and sulfide content) 4 Figure 1.5 contains a list of the important

factors which affect EFCP of aerospace aluminum alloys in aggressive moist gas and

electrolyte environments.

Environmental subcritical crack growth, referred to as stress corrosion cracking

(SCC), occurs in corrosive environments without necessarily involving cyclic loads. The

stress intensity is constant or monotonically changing, and a time-based crack growth rate

is often observed for the metal in the corrosive environment. This crack growth rate,

(daJdt)environment , is the change in crack length per unit time (t). This crack growth occurs at

stress intensity levels well below the fracture toughness, but only in the presence of

environmental embrittlement. For vacuum, da/dt is zero provided there is no crack tip creep

damage. For the environmental case, static loads cause localized plasticity at the crack tip.

A chemical reaction between the material and environment causes crack propagation by
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VARIABLES AFFECTING ENVIRONMENTAL FATIGUE IN ALUMINUM
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Figure 1.5: Mechanical, chemical and metallurgical factors which affect EFCP of

aluminum alloys. After Gangloff and Kim. 9
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either hydrogen embrittlement or film rupture with transient dissolution.

When irreversible cyclic plastic deformation occurs in conjunction with localized

chemical or electrochemical reactions, environment enhanced fatigue occurs. The rate of

crack growth is then represented by (da/dN)_ and is not generally described by a simple

power law.

Despite substantial advances over the past three decades in such areas as small crack

advance and crack closure, the fracture mechanics approach to damage tolerant fatigue life

prediction has not been adequately developed to incorporate environmental effects in

computer codes such as NASA FLAGRO. These codes must ultimately account for a

plethora of variables which interactively affect EFCP kinetics while making quantitative

estimates of the flaw tolerance of aerospace structures. The complex time dependent nature

of EFCP must be researched and understood so that short-term da/dN versus AK data can be



effectivelyusedto predictthelong-lifeperformanceof structuralcomponents.
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1.3 Objective

The generalobjective of this research is to develop a method for estimating

environmental effects on FCP rates in metals for use in NASA FLAGRO. Specific goals of

the research are:

O

O

Develop a set of computer programs which model the effect of an aggressive

environment on the relationship between da/dN and AK, as well as the loading

characteristics. Specifically:

oo Develop a computer program which implements the Wei and Landes linear

superposition model.

o o Develop a curve-fitting based interpolative computer modeling program,

extending the approach used in NASA FLAGRO.

oo Develop a computer program which allows the user to fit a multiple power

law equation to fatigue data.

o o Define the problems that limit these empirical modeling approaches.

Determine the time dependent environment assisted cracking (EAC) behavior of

Ti-6A1-4V as a model system to test the computer programs.

oo Determine the stress corrosion cracking susceptibility of Ti-6A1-4V

in a 3.5% NaCI solution.

oo Determine the effect of loading frequency on EFCP in Ti-6AI-4V in 3.5%

NaCI.



oo Determine the effect of environmentalexposureon crack

Ti-6AI-4V.

12

closure in

1.4 Approach

Oneaimofthisthesisis to developasetof computerprogramswhichmodeltheAK,

R, frequency,andload-waveformdependencies of EFCP rates. Three separate models were

used during this research, a linear superposition model, an interpolative model, and a

multiple power law model. The models and the associated computer program are discussed

in Chapter 2.

In order to test the models, data were needed for a specific material/environment

system. Ti-6AI-4V was chosen as the material, and a NaC1 solution was chosen as the

environment. Ti-6A1-4V was chosen for three reasons. First, it is the most widely studied

titanium alloy, thus there should be extensive data in the literature. Unfortunately, sufficient

data could not be located in the literature, so tests were conducted during this research to

generate more sufficient data to test the computer models. Second, Ti-6A1-4V exhibits

complex effects of R and frequency on da/dN in NaC1 solutions, which makes computer

modeling of FCP rates challenging. Third, Ti-6A1-4V was chosen because of its relevance

to structural applications. Ti-6A1-4V and alloys similar to Ti-6AI-4V are used in high speed

aircraft airframes, in spacecraft pressure vessels, as well as in fasteners for aerospace and

marine structures. ELI grade Ti-6A1-4V is also used in medical implants.

Experiments were conducted to determine the effect of stress ratio and frequency on

da/dN, as well as to determine the SCC susceptibility of Ti-6A1-4V. K-gradient experiments
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for EFCP, and constant crack mouth opening displacement (CMOD) rate experiments for

SCC were performed on the alloy in the L-T orientation in moist air and a 3.5% NaC1

solution, at a fixed electrode potential of-500 mVscE. EFCP experiments were also

preformed at constant/IK levels and varying frequencies in order to determine the effect of

frequency on da/dN in the aqueous chloride solution. Crack closure is measured throughout

all fatigue experiments. Procedures are presented in Chapter 3 and the results of these

experiments are compared to literature data for standard grade Ti-6A1-4V in Chapter 4.

The computer models were bench marked for accuracy and tested using the fatigue

data for Ti-6A1-4V (Chapter 5). Both the linear superposition and the interpolative model

were tested; in particular, the interpolative model and the linear superposition model were

utilized to model the effects of frequency and stress ratio on da/dN. These results are given

in Chapter 6. The computer program will be provided to NASA for incorporation in NASA

FLAGRO.



Chapter 2: Computer Modeling of Fatigue Crack Propagation
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2.1 Aim and Approach of Computer Modeling

The aim of the computer modeling discussed in this thesis is to develop an effective

method for modeling time-dependent EFCP. Three separate empirical models are discussed,

a linear superposition model, an interpolative model, and a multiple power law model. The

equations used by each model to relate da/dN to AK are discussed, along with a summary

of the methods used to determine equation parameters.

2.2 Empirical Models

2.2.1 Background

2.2.1.1 Paris Equation

The Pads Equation is a power law of the form:

da
B = C AK n (2.1)
dN

where C and n are constants that are determined empirically. The Pads Equation is often

only accurate for FCP over a portion of the total da/dN versus AK curve for an alloy.

A typical FCP rate curve is divided into three regions, as shown in Figure 2.1. Region I is

the near threshold region where a decrease in AK results in a sharp decrease in da/dN as the

threshold value ofAK (AKth) is reached. Cyclic loads which produce AK less than AKth do



15

not cause crack propagation.

RegionIII is thenearcriticalregion

where a small increasein AK

producesa largeincreasein da/dN

asK_x approachesKc. RegionII is

atransitionregionbetweenRegions

I and III, and is adequately

describedby theParisEquation.

2.2.1.2Forman Equation With
Closure

The Forman Equation with

crack closure, developed by R.G.

o

1 II i1II_

I

I I

Iog AK K

Figure 2.1: Typical curve showing three regimes of

fatigue crack growth. After Hertzberg. 15

Forman, is discussed in detail in the NASA FLAGRO (Version 2.0) 16user's manual, and is

of the form:

AK ]

dN (l-R) n 1 (1 - K c' q

where C, n, p, and q are empirical constants which depend on material and environment.

The crack opening function, fc, is used to calculate the effect of R on da/dN for a

constant amplitude load. Newman 16 defined the function from plasticity induced crack

closure considerations as:



where:

L =

K
op

K_ax

A
0

= max (R,A o +AIR +A2RU

A o + A1R

= (0.825 - 0.34a

+ A3 R3)

O.05a2)[cos ( _: Sm_x
'4"

t/ 2 o 0

(2.3)

(2.4a)

Smax

A 1 = (0.415 - 0.071a)-- (2.4b)
U o

16

A 2 = 1 - A o - A 1 - A 3 (2.4c)

.4 3 = 2.4 0 + A z - 1 (2.4d)

and Kop is the opening stress intensity, below which the crack is closed. The parameter a

describes the condition of plane stress or plane strain, and Sm_/Oo is the ratio of the maximum

applied stress to the flow stress, where the flow stress is the average of the ultimate tensile

strength and the yield strength. The parameter a is a material constant ranging from 1 for

plane stress to 3 for plane strain. Sm_/Oo varies from experiment to experiment and is not

a material constant, however, the value is taken as 0.3 for most materials incorporated in

NASA FLAGRO.

Certain materials do not exhibit a large effect of R on da/dN, and the effects of crack

closure need not be considered. For these materials a is set to 5.845 and Sm_/Oo to 1.0. The

parameter fc is then zero for R < 0 and becomes R for 0 a R < 1. For positive stress ratios,
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Equation2.2reducesto:

da

dN

A )PC AK" 1 AK

1- (1- R) Xc

(2.5)

For negative stress ratios, AK is replaced by I_,.

2.2.1.3 Forman Equation Without Closure

The Forman Equation without an explicit treatment of crack closure 17, is:

C
da

m _-

dN

AK" (1

(1 \

R AK/q

)

(2.6)

The coefficient C, and the exponents m, n, p, and q are empirical constants. C, n, p, and

q will not have the same values as in Equation 2.2 for a given set of data,

2.2.1.4 Hyperbolic Sine Equation

The Hyperbolic Sine (SINH) Equation was originally developed at Pratt & Whimey

Aircraft, and is discussed by Haritos et. al. is, Van Stone et. al. 19, and Miller et. al. 2° The

equation is of the form:

log (---_)=Clsinh(C2[log(AK)+C3])+C4 (2.7)

The parameters C3 and C4 are the horizontal and vertical locations of an inflection poim,
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respectively.C, isascalefactorfor thevertical

(log daldN)axis, while C2is ascalefactorfor

the horizontal (log AK) axis. The SINH

Equation,schematically shown in Figure 2.2, is

symmetric about the inflection point and does

not define Kc or AKth. The curvature is

idemical in both the near toughness and near

Z

SIN

log AK

threshold regimes. Since the SINH equation Figure 2.2: Schematic ofa SINH curve.

is nonlinear, the effects of changing the parameters are not easily seen, as illustrated for

changing CI, C2, C3, and Ca in Figures 2.3 a through d.

2.2.1.5 Sigmoidal Equation

The Sigmoidal Equation was originally developed by GE Aircraft Engines, as

discussed by Haritos et. al. 18 and Van Stone et. al. 19 The equation is of the form:

°_= In AK
dN

(2.8)

AK c = (1 - R) K c

A schematic of a sigmoidal curve is shown in Figure 2.4. The curve fitting parameters B, P,

Q, D, AKth and AKc are material/environment properties.

The parameter B translates the curve vertically, the parameter P controls the slope
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of the curve, while the curvatures in the near

threshold and the near toughness regimes are

controlled by the constants Q and D,

respectively. When Q and D are set to zero

and/_Kth is set to one, the Sigmoidal Equation

is identical to the Paris Equation.

An alternate form of the Sigmoidal

Equation, known as the Modified Sigrnoidal

Equation (MSE), can be expressed as:

7

log 6K

Figure 2.4: Schematic of a

curve.

20

sigmoidal

e (2.9)

A new variable, AI_., is introduced as the value of AK at the inflection point of the curve.

The parameters Q and D control the shape of the curve between the inflection point and

the upper and lower asymptotes, respectively. P controls the rotation of the curve in the

vicinity of the inflection point, while B' is the vertical distance the inflection point is

displaced from a da/dN value of unity.

2.2.1.6 Multiple Power Law Equation

The Multiple Power Law Equation, shown in Figure 2.5, uses the same relation

between da/dN and AK as the Paris Equation (Equation 2.1) except the values of C and

n change at various transition AK values. By using multiple power law segments, instead

of a single Paris Equation, fatigue data can be more accurately represented in the near
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thresholdandneartoughnessregimes,

where crack growth becomes

asymptotic to characteristic stress

intensityvalues. Multiple power laws

areusefulwhenmodelingthecomplex

da/dN versusAK behaviorthat often

occurs due to aggressive

environments. The sample multiple

power law curve shown in Figure 2.5

consists of three separate power law

Z

/

jji/;[
1

AKTI AIKT2

lag AK

Figure 2.5: Schematic of a multiple power law
CHIVe,

segments, with two transition AK values labeled AKTI and AKr2. For the example, the

Multiple Power Law Equation is written as:

da _-C1 AK n, AK _ AKrl
dN

da K, _
= C e A AKr, _ AK _ AKre (2.10)

da

c, aK aK , aK

2.2.2 Determining Equation Parameters

2.2.2.1 Paris, Forman and Sigmoidal Equations

To determine the equation parameters in the Forman, Paris and Sigmoidal

Equations, the equations are first rewritten in linear form using common logarithms so
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that linear regression can be used. Using AK and da/dN data, a set of simultaneous linear

equations is constructed involving da/dN, AK, and the equation parameters. These

simultaneous equations are solved using Gaussian Elimination and matrix algebra to

determine the equation parameters. For example, the Forman Equation without closure

(Equation 2.6) is rewritten as

r-- alXl • a2x2 + a3x3 +a,x, +asx5 (2.11)

where:

(2.12a)

X 1 -- log (1 - R) (2.12b)

X 2 -- log (AK) (2.12c)

X3 =log 1- AK)

X 4 = - log (1 - R-

(2.12d)

(2.12e)

X s = 1.0 (2.12t)

with A1 = m, A2 = n, A3 = p, A4 = q, and As = log C. Similarly, the Forman Equation

with closure, the Paris Equation, and the Sigmoidal Equation are written in linear

form. These equations are represented in matrix form as:



[,4] [X] = [Y] (2.13)
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where the A matrix contains the equation parameters such as C, n, p, q, and m, the X

matrix contains the values of X1 through Xs, and the Y matrix contains the values of log

(da/dN). This equation is rewritten as:

[,4] -- [.7(]-1 [Y] (2.14)

The equation parameters are then determined by Gaussian Elimination. This method

minimizes the sum of the squared errors with respect to da/dN.

2.2.2.2 Hyperbolic Sine Equation

The user is given two choices in determining the equation parameters in the SINH

Equation. The user can either fit C1, C2, C3, and C4, or the user can fit C2, C3, and C4

with C_ held constant at 0.5. The case of holding C1 equal to 0.5 was included based on

the results of Haritos et. al. 18 To determine the values of the coefficients in the SINH

Equation, nonlinear regression is used. Using an algorithm from Kuester 2_, which

implements a procedure proposed by Marquardt 22,the parameters in the non-linear equation

are determined using the method of least squares. The algorithm requires the user to input

initial estimates for the equation parameters, which can be determined from a graph of da/dN

versus A K. Upper and lower bounds are then selected for each parameter. The best value

for each parameter is found by minimizing the sum of the squared errors, SSE, defined as:

SSE = _(YP,'ed- Yacn,,a)2 (2.15)
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whereYp,_is thepredictedvalueof da/dNandYactu_is theactualmeasuredvalueof da/dN

ata givenAK.

2.2.3 Methods of Specifying AKth and K c

The values for AI_ and Kc contained in NASA FLAGRO are primarily accurate for

fatigue in moist air. Since the models developed during this research were developed for

fatigue in embrittling environments, these values are not acceptable; thus an option has been

included to optimize the values of Kc and/XKth. Presently, the computer models contain

three options: (1) entering AKth and Kc manually, (2) calculating AI_h and Kc using the

equations contained in NASA FLAGRO, or (3) optimizing the values of AI_ and Kc using

a cubic approximation based on input da/dN versus AK data. If the user decides to calculate

AKth and K c using the equations in NASA FLAGRO, the following equations are

used: 19

gc = gzc 1 ÷ BKe Lt* J )

(2.16)

(2.17)

to = 2.0 (2.18)
oy_ )

where b is specimen thickness, AKo is the fatigue threshold at R = 0, Ar and BK are material

constants, and Ors is yield strength. If the user decides to optimize the values of Kc or AKth,

the models fit the data to a cubic equation using linear regression. The cubic equation
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containsanupperand lower asymptote which correspond to Kc and/lI_, respectively.

2.3 Linear Superposition Model

2.3.1 Background

Wei and Landes first proposed that the effect of an aggressive environment on FCP

in high strength steels is independent of cyclic loading. 23 The linear superposition model

predicts EFCP rates by summing the contributions of inert environment mechanical fatigue,

(da/dN)fat_c, and stress corrosion cracking. In equation form:

da da da
m -_ w * m (2.19)

tot_ ttN fa._e dNsn'e_co,_osion

The stress corrosion crack velocity, (da/dt)c._irom.t, is expressed as a function of stress

intensity, K, and integrated over a cycle of fatigue loading to create (da/dN)st_ss _orros_o.:

_$tre$$ corrosion el ¢

(2.20)

where • is the period of the fatigue load cycle and - is the portion of this cycle where SCC

occurs. K(t) is a function of time and employs the loading parameters AK and R (or Km_ and

Kmin), as well as the frequency, f. An example ofa sinusoidal load cycle is:

AK [1 - cos2nft ] (2.21)X(O =K,,,. • --F

The success of the linear superposition model was confirmed for various material-

environment combinations. _3-25 A prediction for 18Ni (250) maraging steel in gaseous

hydrogen is presented in Figure 2.6. FCP rates in argon served as (da/dN)fat_g._, while
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Figure 2.6: Measured and linear superposition predicted FCP rates for maraging steel in H2.
After Wei and Landes} 3

constant load time-based crack growth rate data for this steel in dehumidified hydrogen were

integrated over a cycle of loading to create the stress corrosion component} 3 The procedure

reasonably predicted the absolute magnitude and frequency dependence of hydrogen

enhanced FCP in 18Ni (250) maraging steel.

The effects of/IK andfon da/dN in aluminum alloy 7079-T651 in saturated NaCI

solution were predicted by Speidel using linear superposition. '4 Predictions displayed in

Figure 2.7 show the accuracy of the superposition model, especially at frequencies less

than 1 Hz. Mason 26used linear superposition to predict EFCP raies for 7075-T651 in the

S-L orientation in a 2.5% NaC1 + 0.5% Na2CrO, solution. Fatigue data for 7075 - T651 in

the L-T orientation in helium constituted (da/dN)t,a_, while the SCC component was
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determinedfrom ameasured,K-independentStageII velocityof 4 x 10-9 m/sec in NaC1,

with no growth occurring below a K_scc of 5 MPa4"m. Linear superposition predictions

are shown in Figure 2.8. The data are for a frequency of 5 Hz, while the predictions range

from 0.01 to 20 Hz. The model substantially underpredicts EFCP rates for 7075-T651 in

NaC1. Mason attributed this error to the slow (da/dt)enviro,ment compared to the order of

magnitude increase in (da/dN)tot_ seen in aqueous chloride over inert helium. 26

Harmon et. al. employed the linear superposition model to predict the effects of

_K, hold time, and frequency on elevated temperature FCP rates in nickel-base superalloys,

IN718 and AFl15, at 1200"F. 25 The effects of hold time are reasonably modeled by linear

superposition, Figure 2.9.

The preceding examples show the capability of the linear superposition method to

predict FCP rates for structural alloys in gas and liquid environments, including elevated

temperature. The superposition model is, however, only accurate for limited cases.

Specifically, the alloy must be extremely sensitive to SCC. The contribution of stress

corrosion to crack growth must be significantly greater than that of inert environment

mechanical fatigue. This condition is achieved when the loading frequency is low, the

stress intensity is much higher than K_scc, and (da/dt)environm_nt is relatively rapid. The

predictions by Speidel were for aluminum alloy 7079-T651, a material affected strongly

by environment compared to other 7xxx aluminum alloys, making it a good candidate for

this model. 24 The maraging steel is similarly sensitive to gaseous hydrogen embrittlement,

and nickel-base superalloys are prone to sustained load crack growth at relatively low applied

K. Linear superposition is not likely to be useful for most structural material/environment
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systems where the material is resistant to stress corrosion cracking. 26

2.3.2 Application of Current Model

The linear superposition model used in conjunction with this research, along with

the computer program used to implement the model, were written by Allen W. Wilson at

the University of Virginia, as detailed in the NASA report "Computer Modeling the

Fatigue Behavior of Metals in Corrosive Environments. "27 The program was bench marked

versus exact analytical calculations and tested for the same material/environment systems

employed by Wei and Landes _, Speide124, and Harmon et. al. _ The predictions generated

by the current program agreed with both analytical integration and EFCP data, although

not precisely with the predictions of others. _e The program yielded improved results due

to a more accurate numerical integration algorithm used to calculate (da/dN),m _.
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2.4 Interpolative Model

2.4.1 Background

An interpolative model can be utilized to predict EFCP rates. The parameters in the

crack growth rate equations discussed in Section 2.2.1 depend on stress ratio, frequency, hold

time, and other load and environment characteristics. It is presently not possible to predict

these dependencies based on mechanistic understanding. Rather, each crack growth rate

equation parameter is defined as an empirically selected function of the load characteristics.

Interpolation was employed to describe FCP in nickel-base superalloys at elevated

temperatures. Haritos et. al. is used an interpolative model in conjunction with the SINH and

Modified Sigrnoidal Equations to predict time-dependent fatigue crack growth in Inconel 718

at 649 *C. Haritos expressed the equation parameters in the SINH and Modified Sigmoidal

Equations as functions of f, R, and hold time using the following relationship:

rl -- rl_eli,_ e + a 1 log f + a 2 log (1;+1) + a 3 log [--_]1-R (2.22)

where _ represents an equation parameter, such as C2 in the SINH Equation, and _b_e_i,e is

the value of the equation parameter for f= 1 Hz, _ = 0 seconds, and R = 0.1. The coefficients

a,, a2, and a3 are empirical constants.

The data used to develop the interpolation relationships, as well as the fitted MSE and

SINH Equations are shown in Figure 2.10. Both equations fit the data with similar accuracy,

except in the near threshold regimes where the MSE model provided better results due to a

defined value for AIe_h. Both equations predicted FCP rates accurately when f, R, and x were

within the range of the database used to define the constants in the SINH and MSE laws,
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as seen in Figure 2.11. Figure 2.12 shows that the accuracy of the model is reduced when

the parameters are varied by significant amounts from the baseline case.

Van Stone et. al. _9utilized an interpolative model to predict FCP rates in Rene '95

at 649*C. The Sigrnoidal Equation modeled fatigue crack growth kinetics and the values of

B, P, and Q were interpolated using:

1"I = a I + a 2 In (l-R) + a 3 In (l+10 + a 4 In (l+'r) (2.23)

where rl is B, P, or Q, and V is the cycle ramp time. The parameters a_, a2, a3, and a4 are

empirical constants. Kc and D were constant, and AI_ was interpolated using:

AKth = (AKIh)_ + [Ko(I-R) m - (AKth)s] e(Ar-uO + CO-R) In(l+DV+E'r)(2.26)

where (AKth)s is the static crack growth rate threshold, Ko, m and A through E are empirical

constants. Figure 2.13 compares measured da/dN versus I_ with interpolative model

predictions (I) for Rene '95 at 649 *C with R = 0 and hold times of 4, 30, and 300 seconds.

These examples demonstrate the capability of interpolative models to predict FCP

rates when the load characteristics where data are interpolated are within the establishing

data base. Interpolative models do often show substantial deviation between measured and

interpolated results when the load characteristics where data are interpolated lie outside the

establishing data base. TM Interpolative models are particularly flawed when the damage

mechanism for fatigue changes either within or outside the establishing data base.

2.4.2 Current Model

For the interpolative model developed as part of this research, equation constants
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(suchasC,n, p, andq)aresetequalto linearrelationshipsinvolvingassumedfunctionsof

thestressratio(or_ or K_._),frequencyandholdtime. Theformsof therelationshipsfor

R andx were selected so that they would be similar to those used by Haritos et. al. _s and

Van Stone et. al. _9 The logarithmic form of the relationship forf was selected so that at

lower frequencies, when there is more time for environmental reactions, the function

increases in value. A relationship involving f* was included based on the fatigue results for

ELI Ti-6AI-4V (MA) discussed in Chapter 4.

The forms of the relationships depend on the number of data sets available and the

form of the crack growth rate equation. The number of loading variables (R, x,f, Km=, and

I_i_) that the equation parameters are related to must equal the number of da/dN versus AK

data sets entered. The parameters which the users decides to fit in the crack growth rate

equations are related to the load characteristics, the parameters entered by the user are not.

If only one data set is entered, crack growth rate equation parameters are expressed as a

function of frequency. The user may choose one of the following expressions:

TI -- a 1 f " (2.25b)

where n is a fitted equation parameter (such as C or n in the Forman equation), and ,_ is a

positive or negative constant entered by the user.

If two data sets are entered, and the Forman Equation is selected, the relationship

is given by one of the following expressions depending on the nature of the frequency
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(2.26a)

'v÷ 1]

11 = a_f" + a 2 log [ 0.1 J (2.26b)

The effect of R is included in the original model formulated by Forman and based on

plasticity induced crack closure.

If the Paris, SINH, or Sigmoidal Equation is selected and the user enters two data

sets, the following relationships are used depending on the frequency dependence selected:

11--a_ log[(f). 1].a2 log (l-R) (2.27a)

rl -- a lfa . a2 log (1 - R) (2.27b)

if the stress ratio is held constant. Physically, as R increases, da/dN should increase. The

log (l-R) term decreases as R increases if a2 is positive.

correct trend in da/dN as a fucntion of R is predicted.

relationships are:

If a2 is negative, however, the

If Kmx is held constant the

(2.28a)

'q -- a 1 f " + a 2 log (Kmx) (2.28b)

If Kmi, is held constant, Km_ in Equation 2.28 is replaced by Kmin. This form of the
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relationshipwasselectedsothata dependence on the stress ratio could be introduced into

the Paris, SINH and Sigmoidal Equations.

The effect of hold time is not accounted for with the Paris, SINH or Sigmoidal

Equations if two data sets are used. To account for x, three data sets must be used in

conjunction with one of the following relationships:

11 =a, log[(f). 1]. a21og
Ix+ 1]

(1 - R) * a 3log [ 0.1 J
(2.29a)

[_ . 1] (2.29b)
n = alf ÷ a2 log (1 - R) ÷ a 3 log [ 0.1 ]

if the stress ratio is constant, depending on the frequency dependence selected. If Kmax is

held constant the relationships are:

I .11
11--a, log[(f). 1]+a 2 log (K,_)+a 3 log[ 0.1 ] (2.30a)

11 -- a I f" + a 2 log (Km_) + d 3 log [_ ÷ 1] t2.SOb)
[0.1]

depending on the frequency dependence. IfKmm is held constant, then Kmx in Equation 2.30

is replaced by Kmin.

Equations 2.25 through 2.30 allow the user to interpolate da/dN data as a function of

R (or Kmaxor Kmm),f, x, and AK. This is done by (1) selecting the form of the crack growth

rate equation, (2) selecting the form of the frequency dependence, (3) entering one, two, or

three da/dN versus AK data sets, and (4) determining the values of the coefficients al, a2, and

a3 in Equations 2.25 through 2.30 for selected equation parameters. To determine the values



39

of a_, a2, and a3, the equation parameters are determined for each data set entered, and a set

of simultaneous equations is developed which relates the parameter values to the load

characteristics. Matrix algebra and Gaussian Elimination are used to solve these equations

and determine the coefficients, a+

be determined for any f, R,

Values for the crack growth rate equation parameters can

or x within the range of input data for the same

material/environment system. Given a value of,_K, da/dN can be calculated. Note that AI_

is an equation parameter and expressed in terms of the loading characteristics.

2.5 Multiple Power Law Model

For the multiple power law model, the user is given several alternatives for

determining the equation parameters, including:

o Desired slope offset (in percent).

o Number of power law segments.

o Number of segments and approximate

ranges.

values of the transition stress intensity

If the user enters the desired slope offset, the program begins by fitting the first two

points in the data set to a Pads Equation using linear regression, and records the value of the

slope, n_. The program then fits a Pads Equation to data points 1 through 3, and records the

value of n2. The program defines the slope offset, in percent, using the following equation:

Slopeoffset (n2-nl)
-- X 100% (2.31)

n 1

The program continues fitting additional data points to a Pads Equation until the slope offset
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betweenn_andnH is greaterthanthedesiredslopeoffset. Thelastendpointwhichyields

aslopeoffsetlowerthanthatdesiredbecomesthefirst temporarytransitionpoint. Starting

with this first temporarytransitionpoint,theiterativeprocessis repeateduntileitheranother

temporarytransitionpoint,or theendof thedatafile, is reached.Thefinal valuesfor the

transitionpointsaredeterminedby calculatingtheAK values where two. successive power

law segments intersect.

If the user enters the desired number of power law segments, the program assumes

an initial slope offset of 50%. Using this initial slope offset, the corresponding number of

power law segments is calculated, using the method embodied in Equation 2.31. The slope

offset is then increased or decreased at successively smaller intervals until the desired

number of segments is reached. If the desired number of segments can not be reached by a

user specified number of iterations, the process is stopped. The transition points are

calculated by determining where two successive power law segments intersect.

The final option for determining the equation parameters involves the user entering

the desired number of power law segments and the approximate AK values of the transition

points. The program uses these transition points to determine which data points are fit to

each power law segment. The final values for the transition points are determined by

calculating the aK values where two successive power law segments intersect. This option

gives the user the most control in determining the equation parameters, and often yields the

best results. The weakness of this approach is that the user may bias the definition of power

law transitions.

The three options included in the multiple power law method are subjective. Each



41

requires the user to indicate or bias the number of power law segments placed through the

data. A major enhancement to the algorithm would be to create a method by which the

program determines the number of power law segments and transition points which yield the

best fit to the data. Presently, the model calculates the coefficient of determination to

indicate the accuracy of the fitted equation.

2.6 University of Virginia Fatigue Analysis Software (UVaFAS)

The three computer models utilized during this research were incorporated into a

single executable computer program. The linear superposition model developed by Allen

Wilson, as well as the interpolative and multiple power law models are included in the DOS

executable program UVAFAS.EXE. The program was written using FORTRAN 77, and

compiled with a professional, 32 bit multi-platform FORTRAN compiler from WATCOM,

Inc. Some sections of the source code were taken from NASA FLAGRO, Version 2.016,

including the material files. The program and the source code are included with this thesis.

The program is discussed in detail in Appendix A.
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3.1 Material

Rolled plate of Ti-6AI-4V was obtained from President Titanium in the mill-annealed

(MA), extra low interstitial (ELI) condition (annealed for 8 hours, at 760"C and vacuum

furnace cooled). Chemical composition and mechanical properties are given in Table 3.1.

The micrograph in Figure 3.1 shows that this 12.7 mm thick plate consists of equiaxed a

phase, with an average grain size between 8 and 10 _tm, with a small quantity of retained 13.

This structure is consistent with the mill-anneal process.

Table 3.1: Chemical Composition and Mechanical Properties of Ti-6AI-4V (MA,ELI)

Chemical Composition (wt. %)

A1

6.17

V

4.33

C N

0.025 0.011

Fe

0.19

O

0.12

H Y

0.0055 <0.0005

Ti

bal.

Mechanical Properties

Yield Strength

MPa (ksi)

Tensile Strength

MPa (ksi)

Elongation

Percent, %

Reduction

in Area, %

940 (136) 982 (142) 13 30.2

Fracture Mechanics Experiments

Fracture Mechanics Specimen

A closed loop servohydraulic MTS 810 Material Test System with a
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Figure 3.1: Micrograph of Ti-6AI-4V (MA,ELI) showing that the microstrueture consists

of equiaxed tt with retained I1.

PC-based software to

ultrasonically cleaned

machining debris.

Microconsole controller and 50 kN load cell was used to conduct all monotonic load and

FCP rate tests. The test machine was interfaced with Fracture Technology Associates (FTA)

control all test conditions and acquire data. Specimens were

in acetone for at least five minutes before testing to remove

All experiments utilized fracture mechanics methods applied to the compact tension

(CT) specimen shown in Figure 3.2, machined in the L-T orientation. Holes were tapped

into the specimen to accommodate a plexiglass environmental cell and knife edges, as seen

in Figure 3.3. The specimens were mounted in the load train via clevises, and the applied

stress intensity was calculated from measured load and crack length using a standard elastic
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H 38,1 :1;0.15
W 63,5 + 0.15
b 6.4 :1:0.03
a. 12.4 + 0.15
B 79.4 + 0.15
c 17.5 + 0.15
f 3.2 + 0.15
g 25.4 + 0.15
h 12.7 + 0.15
k 2.0 + 0.15
I 3.2 + 0.15
m 6.4 + 0.15
n 4.3 + 0.15
r 8.3 + 0.15
s 0.13 + 0.13

(mm) tol. (mm)

d tapped 2-56 3.8
I tapped 4-40 2.5
J smooth 12.7 mm through thickness + 0.15

Figure 3.2: Schematic showing dimensions of the compact tension specimen utilized in

EAC experiments.
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where a is crack length, W is specimen width, b is specimen thickness, and P is applied load.

In order to insure that the specimen was predominantly elastic at all applied loads, the

following condition was satisfied, in accordance with ASTM standards_:

(W-a) > 4 ( K_I 2_°rs ] (3.3)

3.2.2 Crack Length Measurement Methods

3.2.2.1 Compliance

The elastic compliance method was used to determine crack length during all fatigue

experiments. The relationship between compliance and crack length is expressed in terms

of the dimensionless quantities (EvB)/P and a/W, where E is the elastic modulus, and v is

the displacement in the loading direction between measurement points, located to give the

crack mouth opening displacement (CMOD in Figure 3.2). The following polynomial

expression was used to determine crack length: 1
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a= 1.00098_4.66951 ux. 18.4601 u2-236.825u3÷ 1214.88u4-2143.570 lu 5
W

(3.4)

-1

(3.5)

3.2.2.2 Direct Current Potential Drop (DCPD)

The DCPD method was used to measure crack length during all monotonic load

experiments. Total crack length was determined from DCPD measurements using the

following equation:'

a -0.5051÷ 0.8857(_o) 0.1398( -_o/2 (-_o)
-- -- - . 0.0002398
W

(3.6)

where V is the measured potential for a crack length and Vo is a reference potential defined

for (a/W) = 0.241. Visual measurements of the initial crack length (notch + fatigue precrack)

and the measured potential at crack initiation yielded Vo for each specimen and applied

current through Equation 3.6.

3.2.2.3 Visual

Visual crack length measurements were made from markings on the fracture surface

produced by changes in applied test conditions and viewed after specimens were fractured.

Measurements were made using Image-Pro Plus image analysis software connected to a

video camera with a 10x magnifying lens. The image analysis software was calibrated using

the specimen thickness, measured with a micrometer. Visual crack length measurements

were entered into the analysis software, along with the corresponding value of either the

dimensionless quantity (EvB)/P, or the potential drop. Visual measurements were used to
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correctthecracklengths calculated by Equations 3.4 and 3.6.

For all six specimens used in the study, post-test crack length measurements observed

at transitions in fracture surface appearance were compared to the uncorrected values given

by the compliance or DCPD method, as shown in Figure 3.4. The crack lengths determined

by both methods are within + 10% of actual crack lengths for all cases. A straight line was

fit to the data using least squares regression. The slope of the line was 0.9964 + 0.0486 using

a 95% confidence interval, thus the slope of the line was statistically equal to 1.0.

3.2.3 Monotonic Loading

Experiments to determine Krn, the threshold stress intensity for environmental crack

initiation, as a function of load line displacement rate were performed at several constant

CMOD rates. FTA software was utilized to control the CMOD rate, measured by a clip

gage, and crack length was calculated using DCPD measurements. The specimens used for

monotonic load experiments were fatigue precracked in a 3.5% NaC1 solution at a fixed

electrode potential of-500 mVsc E from (a/W) of 0.2 to 0.5 at a constant/iK of 15 MPad'm,

R of 0.1 and frequency of 5 Hz, except for one specimen which was precracked to an (a/W)

of 0.68 in moist air.

In all monotonic load experiments conducted to determine Kra, a 3.5% NaCI solution

at a fixed electrode potential of-500 mVsc E was used. A single test was performed in moist

air to determine the plane strain crack initiation fracture toughness, Jic.

3.2.4 Fatigue Testing

Fatigue crack propagation was produced in stress intensity control, with load

measured to provide active feedback control and CMOD measured to provide crack length



49

E
E

{q
{q

6O

5O

40

3O

20

10

0

Ti-6AI-4V (MA,ELI)

CT Specimen

Fatigue, Monotonic Load

Etrr, tatY.r.r_
...... 0% Error

5% Error

10% Error

Measurement Technique

0 Compliance
_' DCPD

0 10 20 30 40 50 60

ameasured (mm)

Figure 3.4: Comparison of post-test crack length measurements, a_cm_, with uncorrected

compliance and DCPD values, am_.d.



50

for stressintensitycalculations. Experimentswereconductedusing FTA compliance

basedsoftware, whichprovidesmeasurementof da/dN- AK, closurestressintensities,

AKerf, and daJdN - AK_ff according to standardized test procedures. _ The FTA software

utilizes the secant method to calculate da/dN. Stress intensity was always varied sinusoidally

with time in a fatigue experiment.

3.2.4.1 Fatigue Preeraeking

All fatigue specimens were fatigue precracked under a constant AK (15 MPa4"m and

R of 0.1) from (a/W) of 0.2 to 0.25. The precrack AK was equal to or less than the first

applied AK after the precrack, or the fmal I_ obtained during precraeking did not exceed

the initial _ for which test data were obtained. All specimens were precracked in the test

environment, either moist air or a 3.5% NaC1 solution (-500 mVscE).

3.2.4.2 K Gradient Procedure

The K gradient method was utilized to generate da/dN versus AK data. K_x was

defined as:

Kmx = _ e [c (o-",)1 (3.7)

where Kma × is the maximum stress intensity corresponding to crack length a, I_xo is the

initial maximum stress intensity at ao, ao is the initial crack length, and C is a constant taken

as + 0.06 mm l. The specimen dimensions, precracking, K gradient procedures, and the

method used to determine da/dN comply with ASTM Standard E647-911. Fatigue

experiments were conducted at constant R; Km_x and AK varied during the experiments.

Several tests were also conducted holding AK, R, and the frequency constant. These
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testswere conductedto determinechangesin crackclosureloadsasa functionof crack

lengthandtimeat constantAK levels.Testswerealsoconductedwith AK andR constant,

but frequencywasvariedaftera setincrementof crackgrowth,in orderto determinethe

precisevariationof da/dNwith frequency.

3.3 Environment

A plexiglassenvironmentalcellwasusedto fully immersethecracktip in anaerated

solutionof 3.5weightpercentNaC1.A rubbergasketwasusedto sealthetopandbottom

portionsof thecellto eachfaceof theCTspecimen.Thecelltopandbottomwereconnected

with a flexible latexsheetto containthesolution. Thisdesignwasutilizedsothatthecell

wouldnot interferewith CT complianceby introducingfriction forces.

TheCT specimenwasmaintainedat afixedelectrodepotentialof-500 mVscEwith

apotentiostat,platinumwiremeshcounterelectrode,andtwoAg/AgC1referenceelectrodes

locatedalong the crackpathon eachsideof the specimen.Thecounterelectrodewas

isolatedfromthecell andpositionedina separate2 liter reservoir.Electrodepotential,and

thedifferencefrom onesideof thespecimento theother,weremonitoredthroughouteach

experimentwith two Ag/AgC1referenceelectrodes.Generally,thedifferencewaslessthan

20mVscE.Thesolutionwascirculatedcontinuouslythroughthecellandthespecimennotch

at0.5ml/secfrom a2liter reservoir.Thisapparatus,illustratedin Figure3.5,wasdesigned

to maintainconstantsolutionenvironmentconditionsfor testtimesof up to onemonth.

3.4 Crack Closure Measurements

FTA software was utilized to monitor crack closure levels during fatigue precracking
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and fatigue experiments. The software employs the elastic compliance technique to enable

both crack length and crack closure measurement. 2s The procedure involves collecting 400

evenly spaced load-displacement (P-v) data pairs during both the loading and unloading

portions of each fatigue cycle. A least squares fit of P-v data is then performed on segments

of data with a range of 10% of maximum load and which overlap by 5%, as illustrated in

Figure 3.6. Segment 1 ranges from 98 to 88% of maximum load, segment 2 from 93 to 83%

of maximum load, segment 3 from 88 to 78%, and so forth. Each slope is compared with the

slope of the linear region of the load-displacement curve, and the percent change in slope is

computed. The first slope segment corresponding to a percent change in slope greater than

either 1, 2, 4, 8, or 16% from the linear region of the curve is identified. Load levels

corresponding to a slope offset of 1, 2, 4, 8, or 16% are computed (Figure 3.7) and used to

calculate K_ and AI_ff. The closure level corresponding to a 2% slope offset was utilized

to calculate AI_ff during all fatigue experiments. 28
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Chapter 4: Experimental Results

Th& chapter will present the results of the experiments conducted on Ti-6AI-4V

(MA, ELI) in order to generate data to test the computer models. The results are compared

to the environmental FCP behavior of standard grade Ti-6AI-4V (MA).

4.1 Monotonic Loading

4.1.1 Fracture Toughness

The plane strain fracture toughness, K_c, for Ti-6A1-4V (MA,ELI) in moist air is

required to assess the extent ofNaCl embrittlement. However, since the CT specimens used

did not meet the size requirement found in ASTM E399-9029, K_c could not be directly

determined. Instead, an elastic-plastic analysis was utilized and Jic was experimentally

determined. The equations used to calculate Jelastie and Jptasaeare given in ASTM Standard

E 1152-87. 30 The "plastic" area under the experimental load versus load-line displacement

plot was calculated by subtracting the "elastic" area from the "total" area using an unloading

compliance line calculated from the DCPD crack length measurement. In all of the tests,

Jplastic was less than 10% of Jto,_].

An experiment was conducted in moist air at a constant CMOD rate of 4.7 x 10 .5

mm/sec. Figure 4.1 shows the resulting load and DCPD data as a function of CMOD. Crack

initiation was defined at the first resolvable increase in the DCPD signal above a mildly

increasing background. In accordance with AS TM E813-9031, Jic was determined as 49.7

kJ/m 2. Plane strain conditions were assumed at crack initiation, and Kj_c was calculated

using:
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where v is Poisson's Ratio (0.33) and E is 110 GPa. 32 Kjic equals 78 MPa4"m. Krc should

be between 65 and 75 MPa4"m for mill-annealed Ti-6A1-4V. 9 The ELI grade is generally

tougher, consistent with the measured value of 78 MPa4"m.

4.1.2 Stress Corrosion Cracking Behavior

The first issue addressed to understand the complex environmental fatigue behavior

of Ti-6A1-4V in NaC1 was stress corrosion cracking. Dawson and Pelloux 33 observed SCC

in mill-annealed Ti-6A1-4V, and reported a Klscc value of 23 MPa4"m in 3.5% NaC1 at a

free corrosion potential.

In order to determine the SCC susceptibility of the mill-annealed, extra low

interstitial Ti-6A1-4V used in this study, constant CMOD rate experiments were conducted.

Figure 4.2 is a plot of applied load versus CMOD for an experiment conducted in 3.5%

NaCl (-500 mVscE) at a constant CMOD rate of 3 x 10 .5 mm/sec. KTn was defined as the

point on the P-v plot where the data first deviated from linearity. (NaC1 deposits formed on

the DCPD wires and interfered with crack growth detection from electrical potential.) KTn

was calculated from the J integral at crack initiation.

For the results shown in Figure 4.2, where the CMOD rate was 3 x 10.5 mm/sec, (VLL

-- 2.3 x 105 mm/sec *), KTH was calculated as 55 MPa4"m. A second experiment was

"Load line displacement (VLL) is estimated from CMOD using a geometric relationship. 34



58

6

5

4

2

0

Ti-6AI-4V (MA,ELI)

3.5% NaCI, -500 mVsc E

L-T Orientation

CMOD Rate = 3 x 10 "s mm/sec

1200

1000

800

600

400

2O0

m

o

0 1 2 3

CMOD (ram)

Figure 4.2: Load versus CMOD for monotonic loading of Ti-6A1-4V (MA,ELI) in 3.5%

NaC1 at a fixed electrode potential of-500 mVsc_ for a CMOD rate of 3 x 10.5 mm/sec. The
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conductedunderthesameconditions,exceptCMODratewasincreasedto 4.7x 10.5mm/sec

(VLL=3.4X 10.5mm/sec).MeasuredloadversusCMOD dataareshownin Figure4.3,and

Kv, wascalculatedas48MPa4"m.

A final experimentwasconductedwhereloadonprecrackedTi-6A1-4V(MA,ELI)

wasincreasedmonotonicallyin 65minutesto a levelcorrespondingto astressintensityof

40MPa4"m.Thiscorrespondsto aVLLof approximately9.2x 10.5mm/sec.Sincecracking

wasnotobserved,theloadwasheldconstantfor 137hoursatthis level. Thespecimenwas

atafixedelectrodepotentialof -500mVscEfor thefn'st55hours,andthenswitchedto free

corrosionfortheremainderof theexperiment.Theopencircuit,or freecorrosionpotential

wasmeasuredasapproximately-240mVscE.TheresultingloadversusCMODplotisshown

inFigure4.4. Thecrackdidnotgrowduringthis test,sincetheloadremainedconstant.A

loaddropof 0.11kN wouldhavebeennoticeableandcorrespondedto 0.22mm of crack

growth.

Thestressintensityvaluescalculatedfor crackinitiationin theTi-6A1-4V(MA,ELI)/

NaC1systemaremuchhigherthanKxsccreportedbyDawsonandPelloux33for mill-annealed

Ti-6A1-4V. The majordifferencebetweenthealloystudiedby DawsonandPelloux,and

thealloyusedduringthisresearch,is thepurityof theELI condition.This increasedvalue

for K_ indicatesan increasedresistanceto SCC.

K_ dependson load-linedisplacementrate,asevidencedbythesetwo experiments.

MoskovitzandPelloux35reportedadependenceof Krnon loadingratefor ana + I_alloy,

Ti-6AI-6V-2Sn (MA), in 3.5% NaCI. Figure 4.5 is a plot of K_ versus stress intensity rate

(dK/dt) for single edge notch (SEN) specimens (/i, D). Also shown are the results (o)
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for the experiments seen in Figures 4.2 through 4.4. K_ was plotted versus stress intensity

rate because strain rates control the value of Krn, and stress intensity rate controls the strain

rate. In order to calculate the stress intensity rates for the Ti-6AI-6V-2Sn data, the change

in load with respect to time (dP/dt) was calculated for each K_ value. This dP/dt was then

substituted for load in the stress intensity expression for a SEN specimen, so that stress

intensity rate could be calculated instead of stress intensity.

Environment assisted cracking (EAC) occurs in the Ti-6AI-4V (MA,ELI) system, as

seen by a comparison of the data shown in Figures 4.1 and 4.3. The experiments were

conducted under identical loading conditions; only the environment was changed from moist

air to 3.5% NaC1 (-500 mVscE). Unlike the data in Figure 4.1, the data in Figure 4.2 (and to



63

alesserextentin Figure4.3)exhibitdecreasesin loadatconstantCMOD. Theseloaddrops

of 0.2to 0.4kN correspondto "bursts"of crackgrowth. Sincetheonly differencebetween

thetwo experimentsis environment,EAClikely occurred,albeitat averyhighK level.

ELI grade Ti-6AI-4V (MA) exhibits a (daJdt)enviromen t that is less than 10 .5

mm/sec. Figure 4.4 presented the results of an experiment conducted in 3.5% NaC1 (-500

mVscE) where the stress intensity was held constant at 40 MPa4"m for 137 hours. A load

drop of0.11 kN would have been noticeable, and corresponded to 0.22 mm of crack growth.

As seen in Figure 4.4, the load did not drop by a resolvable amount. However, assuming a

maximum crack extension of 0.22 mm during this experiment, the corresponding

(daJdt)environmen t is 4.5 x 10"7mm/sec. The environment enhanced time-based crack growth

rate for Ti-6AI-4V is accordingly less than this very low value.

Since the Krn values determined for Ti-6A1-4V (MA,ELI) are much higher than

literature data for K_scc, SCC does not significantly contribute to time or R dependent

environmental fatigue for the range of stress intensities used in this study (5 to 45 MPa4"m).

4.2 Environment Enhanced Fatigue Crack Growth

4.2.1 Literature Background

4.2.1.1 Effect of Environment on da/dN

FCP in Ti-6AI-4V is generally strongly environment sensitive, with multiple da/dN-

AK power law transitions reported for moist air and aqueous chloride solution. 33,36-39 ELI

grade Ti-6A1-4V (MA) displays a complex, multiple slope behavior in both moist air and a

1.0% NaCI solution (-500 mVscE), as seen in Figures 4.6 and 4.7. A 1.0% NaC1 solution
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( -500 mVscE) is detrimental and enhances fatigue crack growth rates relative to FCP in

moist air, as seen in Figure 4.8. The NaC1 environment increased FCP rates by an average

factor of 2._ for an R of 0.1, by 2.0 for an R of 0.4, and by 2.2 for an R of 0.7. The data

were taken from a study of this same heat of Ti-6A1-4V (ELI) by Gangloff and Kim. 9

4.2.1.2 Effect of Stress Ratio on da/dN

The effect of stress ratio on FCP in Ti-6A1-4V(MA,ELI) in moist air and a 1.0%

NaCl solution (-500 mVscE) is demonstrated in Figures 4.9 and 4.10. These data are

replotted from Figure 4.8. As R increases from 0.1 to 0.7, da/dN increases at a constant AK

in both environments.

4.2.1.3 Effect of Sinusoidai Frequency on da/dN

The effect of frequency on FCP in titanium alloys is strongly environment sensitive.

Three different forms of frequency dependence were identified by Dawson and Pelloux 33for

the mill-annealed a + [t alloys Ti-6AI-6V-2Sn and Ti-6AI-4V, as schematically illustrated

in Figure 4.11.

"Type 1" is a frequency independent behavior, and was observed by Dawson and

Pelloux 33 for FCP in inert environments, moist air, and aqueous solutions containing a

corrosion inhibitor, Na2SO4. For "Type 2" behavior, da/dN increases with decreasing

frequency for all AK. Dawson and Pelloux observed this behavior for titanium alloys in

distilled water and methanol-HCl solutions. "Type 3" behavior is unique to a + _ titanium

alloys in aqueous solutions containing the halide ions Cl and Br. For "Type 3" behavior,

daJdN increases asf decreases at high AK values, but da/dN decreases asfdecreases at low

AK values. "Type 3" behavior was later observed by Dawson 4° for Ti-6A1-6V-2Sn in
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methanol-water solutions, and by Yoder et. al. 41 for beta annealed and mill annealed Ti-6AI-

4V in 3.5% NaCI solutions. Figure 4.12 shows this behavior for Ti-6AI-4V(MA) in 3.5%

NaC1 for R = 0.1. Note that these data do not extend to particularly low growth rates.

"Type 3" behavior has been called the frequency "crossover" effect by Dawson and

Pelloux. 33 The "crossover" is a change in the ordering of da/dN at a transition AK value

associated with the onset of "cyclic" SCC. Below the transition AK levels, labeled AKscc

in Figure 4.11, daJdN decreases with decreasing frequency, perhaps due to passive film

formation at the crack tip. Above AKscc, daJdN is perhaps controlled by hydrogen

embrittlement; da/dN increases as frequency decreases and more time is allowed for

hydrogen embrittlement to occur.

Dawson and Pelloux 33reported that the threshold for "cyclic" SCC (AKscc) is lower

than Kzscc and increases as frequency decreases, as shown in Figure 4.13. As frequency

decreases, AKscc should approach (1-R)Kisco since this corresponds to _ equalling Kiscc.

As seen in Figure 4.13, this behavior is observed for standard grade Ti-6A1-4V (MA) in

NaC1.

Figure 4.14 demonstrates the effect of frequency for beta annealed (BA) Ti-6A1-4V

in a 3.5% NaC1 solution for R of 0.1 and AK values between 16 and 59 MPa4"m. The data

are consistent with the frequency crossover effect. Notice in Figure 4.13 that if a constant

value of AK is selected, such that AK is less than (1-R)Kiscc (for K_scc = 23 MPa4"m), a

critical frequency exists at which this AK value is equal to hKsc c. For example, if a AK

value of 1 1 MPa4"m is selected, then the critical frequency is 10 I-Iz; at this frequency, the

selected AK is equal to AKscc. For frequencies less than this critical frequency, the selected
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AK value is below AKscc, for frequencies above this critical value, AK is above AKscc.

Figure 4.14 indicates a maximum da/dN for each AK value except 59 MPa4"m. These

maximum values occur at the critical frequency where AK is equal to AKscc. Figure 4.15

is a plot of hKscc versus frequency for the data presented in Figure 4.14. Figure 4.16

illustrates this concept of a critical frequency. For frequencies less thanf_,t , at a fixed AK*,

da/dN decreases as frequency decreases since AK* is below AKscc. For frequencies above

f_r_,, daJdN decreases as frequency increases since AK" is above AKscc.

The Wei and Landes 23linear superposition model appears to correctly describe the

effect of frequency on da/dN for mill annealed titanium alloys in aqueous chloride solutions

for FCP above KISCC .42"43 The model does not, however, accurately account for corrosion
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Figure 4.14: Effect of frequency on fatigue crack growth in Ti-6AI-4V (BA) in a 3.5%
NaCI solution for R = 0.1. After Chiou and Wei."

fatigue crack growth below Kxscc. Bucci 42attributed this difficulty to "extrapolation" of

cyclic SCC below Klscc. Meyn '3 and Speidel et. al. 39regard corrosion fatigue below Klscc

as "true corrosion fatigue," a process distinct from cyclic SCC above K_cc. The assumption

made by Meyn '3 and Speidel et. al. _9implies that the threshold for cyclic SCC is the static

load Ktsco an assumption not supported by the results published by Dawson and Pelloux 33,

who found that AKscc was frequency dependent.

4.2.2 Results for Ti-6AI-4V (MA,ELI)

In order to determine the effect of frequency on EFCP in Ti-6A1-4V (MA,ELI), two

separate K-gradient experiments were conducted at a R of 0.1, and frequencies of 1 and 40

Hz. The experiments were conducted in a 3.5% NaCl solution, at a fixed electrode potential

of-500 mVscE. Unfortunately, the experiment for a frequency of 1 I-Iz was invalid since the
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effective modulus calculated at the end of the test varied by more than 10% from the actual

value for Ti-6A1-4V. *° Gangloff and KJm 9 generated data for the same heat of Ti-6A1-4V

at a frequency of 5 Hz and R of 0.1 in an earlier study for a slightly different environment,

a 1.0% NaC1 solution at a fixed electrode potential of-500 mVsc e. Figure 4.17 shows the

results for the 40 Hz test conducted in aqueous chloride, as well as the results generated by

Gangloff and Kim. 9 Also shown are the results of a K gradient test conducted in moist air

(R = 0.1,f= 5 Hz) and two tests conducted at a constant AK of 15 MPa4"m, frequency of 5

Hz, and R of 0.1. One test was conducted in moist air (o) and one in a 3.5% NaC1 solution

at -500 mVscE(A ).

In order to determine the precise effect of frequency on da/dN, an experiment was

conducted in 3.5% NaC1 (-500 mVscE). AK was held constant throughout the test, either at

12.5 MPa4"m or at 25 MPa4"m, while R was constant at 0.1. The &K values were selected

so that one was above and one was below Kxscc of 23 MPa4"m reported for Ti-6A1-4V (MA)

in 3.5% NaCI._7 If the ELI grade Ti-6A1-4V (MA) behaves similarly to the standard grade

Ti-6A1-4V (MA), the alloy should exhibit the frequency "crossover" effect. The frequency

was changed after an increment of crack growth and da/dN was determined by linear

regression of a versus N. For both AK levels, experiments were conducted for a range of

frequencies between 0.03 and 10 Hz. By determining da/dN for a constant AK, small

changes in da/dN due to frequency can be resolved. Figure 4.18 summarizes crack length

as a function of cycle number for this experiment. Figure 4.19 is an expanded plot of a

**This 1 Hz experiment required six weeks to complete, and illustrates the long times and

complexities involved in conducting a corrosion fatigue experiment.
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versus N for the first two frequencies utilized during both AK levels. As seen in Figures 4.18

and 4.19, crack length was generally linear with respect to N. There were also no transients

observed when the frequency was varied. The data seen in Figure 4.19 for the first two

frequencies where data were collected clearly show that at both AK values, as frequency

increases da/dN increases.

Figure 4.20 is a plot of da/dN as a function of frequency for the two AK values, as

well as data for the same constant AK values and a frequency of 40 Hz taken from Figure

4.17. The data point for AK = 25 MPa4"m and a frequency of 40 Hz was extrapolated from

Figure 4.17 using a Paris Equation. At the low AK value of 12.5 MPa4"m, da/dN is

proportional tof 0.,8; at the high AK level of 25 MPa4"m, da/dN is proportional tof °.'°. The

slope of the line fit through the data for AK= 12.5 MPa4"m is 0.18 ± 0.163 based on a 95%

confidence interval, while the slope of the line fit through the data for AK = 25 MPa4"m is

0.10 4- 0.174 based on a 95% confidence interval. The data for a frequency of 40 hz were not

included in the calculation. The two slopes are statistically equal, and are consistent with

zero slope (f independent) based on these confidence intervals. Frequency has a mild

effect on daJdN for AK less than 25 MPa4"m; the alloy does not exhibit the frequency

"crossover" effect, and in fact, da/dN increases monotonically with increasing frequency.

These data better define the frequency dependence of EFCP rates for a + I_titanium alloys

in the important low-AK regime, compared to the limited data in Figure 4.12.

The data seen in Figure 4.20 do not exhibit the frequency "crossover" effect. This

can be attributed to the high K_ value and the increased resistance to SCC. The increased

resistance to SCC leads to a high value for AKscc that is greater than 25 MPa4"m for all of
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the frequencies tested. Figure 4.21 shows AKscc as a function of frequency using results

from Dawson and Pelloux 33and Yoder et. al. 41These results are consistent with a K1scc value

of 23 MPa4"m. The results for the ELI grade were scaled so that at low frequencies, AKscc

would approach (l-R) K_ for a K_ value of 48 MPa4"m (From Figure 4.5) and R of 0.1.

Based on these results, a AK of 25 MPa4"m would equal AKscc at a frequency of 200 Hz;

five times higher than the fastest frequency where data were collected, 40 Hz. Since this

frequency was never attained, cyclic SCC did not occur during the variable frequency test;

AK values of 12.5 and 25 MPa4"m were always below AKscc, and da/dN was directly

proportional tof 0.10to0.18
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Shown in Figure 4.22 are the data for ELI grade Ti-6A1-4V (MA) (S,II) and Ti-

6A1-4V (BA) (V,A) at AK values of 16 and 22 MPa4"m taken fi'om the literature. 44 The data

for the ELI grade were scaled, using a Paris Equation, from AK values of 12.5 and 25

MPa4"m to those employed by the literature) 4 As seen in the Figure, the ELI grade exhibits

da/dN which are higher than the beta-annealed Ti-6A1-4V in NaC1. Also, the ELI clearly

does not exhibit the frequency crossover effect, while the beta-annealed alloy does.

4.3 Crack Closure Phenomena

Crack closure levels were recorded during all fatigue experiments. Pcl, the crack

closure load, was calculated at the first deviation in slope of the load-displacement data,

defined at an offset of 2% from linearity. 3° In order to determine the accuracy of the FTA

software in determining closure levels, Kcl was measured as a function of crack length in

moist air and a 3.5% NaC1 solution (-500 mVscE) for a constant AK of 15 MPaq'm, R of 0.i,

andf of 5 Hz. Figure 4.23 is a plot of K_t versus crack length, and Figure 4.24 is a plot of

K_I/I_, versus crack length for air and chloride. In each environment, the values of KcOCm_

were 0.3 and essentially constant with increasing crack length. A model by Newman

predicts that plasticity induced closure is important for R less than 0.4. 45 For example, the

predicted value of Kc,/Km_x is 0.3 for a R of 0.1, and 0.45 for a R of 0.4 for the titanium alloy

used during this study. Figures 4.23 and 4.24 establish that neither abnormal surface

roughness nor corrosion debris from NaC1 exposure promote crack closure above the level

typical of plasticity induced closure.

Figure 4.25 is a plot of I_/K_ versus ,xK for the fatigue test conducted in the 3.5%
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NaCI solution at a fixed electrode potential of-500 mVsc E for a frequency of 40 Hz, as well

as the test conducted in moist air at a frequency of 5 Hz. Also shown in the figure are the

results reported by Gangloff and Kim 9 for Ti-6A1-4V (MA,ELI) in moist air and 1.0% NaC1

(-500 mVscE) for a frequency of 5 Hz. For AK values between 10 MPa_fm and 25 MPa¢'m,

the values of Kcl/K_ center around 0.3 for all of the experiments. These levels are

consistent with plasticity induced closure, as predicted by Newman. 45 The model does not,

however, explain the rise in closure levels at AK levels below 10 MPa4"m, particularly for

the NaCl case. Notice that the difference between the replicate tests in moist air (A and D)

is larger than the effect of environment.

Closure levels were recorded during the Ti-6A1-4V (MA,ELI) EFCP experiment

conducted in aqueous chloride where AK was held constant and frequency was varied.

Figure 4.26 is a plot of KJI_ versus crack length for this variable frequency test. As

shown in the figure, frequency and test time have little effect on closure levels at both AK

levels. For a AK level of 25 MPa4"m, Kcl/Km_x was 0.3 (Figure 4.26b) for all frequencies,

with the possible exception of the initial low frequency segment. This level is in excellent

agreement with the data in Figure 4.24 and is consistent with plasticity induced closure, as

predicted by Newman. 45 For a AK level of 12.5 MPa4"m, KJK_x was 0.38 (Figure 4.26a),

slightly higher than that expected for plasticity induced closure. The high levels of KdKm_ ,

seen at the lower AK levels in Figure 4.25 and Figure 4.26a could be due to roughness or

oxide induced closure. Both of these closure phenomena are time dependent, and important

in the near threshold regime where there is a small crack tip opening displacement. The data

in Figure 4.20, however, suggest that time does not affect closure levels.
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Chapter5: Application of Computer Models

This chapter discusses the applications of the linear superposition and the

interpolative models to environmental FCP data for standard and ELI grade Ti-6Al-4V

Specific results are presented coupled with a discussion of the capabilities of each(MA).

model.

5.1 Linear Superposition Model

The Wei and Landes linear superposition model was applied to Ti-6A1-4V (MA) in

a 3.5% NaC1 solution, using data from Dawson and Pelloux) 3 and the computer program

UVAFAS.EXE. The model was not applied to ELI grade Ti-6AI-4V due to the high KrH and

near f independence of da/dN exhibited by this alloy. In order to apply the linear

superposition model, inert environment mechanical fatigue data and SCC velocity data were

required. Fatigue data for Ti-6A1-4V (MA) in dehumidified and purified argon served as the

inert environment mechanical fatigue component, 46while (da/dt)_._i_onm_,tdata for Ti-6A1-4V

(MA) in a 0.6M KC1 (4.3% KCI) solution at -500 mV versus a standard hydrogen electrode

(SHE) served as the SCC velocity data. 39 The crack velocity data are for a different

environment than the 3.5% NaC1 environment utilized by Dawson and Pelloux, 33 but should

be adequate since, when dealing with SCC of a + 13titanium alloys in aqueous solutions, the

anion (CI) is dominantly detrimental, while the cation (K ÷ or Na ÷) does not have a large

effect. According to Blackburn et. al., cations less noble than titanium, such as Na ÷ and K ÷,

have no effect on SCC behavior. 47

Figure 5.1 summarizes the fatigue data for Ti-6A1-4V (MA) in a variety of

environments. The data for dehumidified and TSP purified argon (o) were fit to the Forman
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Equation with closure (Equation 2.2); the parameter a was 2.5, while Sm_x/Oowas 0.3. The

constant p was entered as 0.25, while q was 0.75, based on NASA FLAGRO materials files.

AK,h was calculated using an expression determined by Speidel 4s for a wide variety of

materials in vacuum, including Ti-6A1-4V. The equation is:

AKth = 2.7 X 10 -s E (5.1)

where E is the elastic modulus given in MPa, and AKth is in MPa4"m. The elastic modulus

was taken as 110 MPa 33, corresponding to a AI_ of 3.0 MPa4"m. Kc was entered as 78

MPa4-m based on results presented in Section 4.1.1. The constants C and n were fit, C was

determined to be 9.9 x 10 8, while n was determined as 2.6. The coefficient of determination

was 0.9941. The fitted equation is shown in Figure 5.1 as a solid line. Da/dN was in units

ofmm/cycle, while AK was in units of MPa4"m.

Figure 5.2 shows the stress corrosion crack velocity data input to the superposition

model. The data were fit to a Sigmoidal Equation of the form:

= e K K (5.2)

where Kw is the threshold for stress corrosion cracking and Kc is the fracture toughness.

K rH was entered as 23 MPa4"m 33, while Kc was 78 MPa4"m. For the -500 mVsa z (-259

mVscE) case, B was 1.068, P was -8.738, Q was 1.482, and D was determined to be -4.735.

The coefficient of determination of the fitted equation, shown in Figure 6.2 as a solid line,

was 0.9919. Da/dt was in units on mm/cycle, while K was in units of MPa4"m.
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EFCP rates were predicted using the linear superposition model in UVAFAS.EXE

for Ti-6AI-4V in a 3.5% NaC1 solution (at a free corrosion potential), R of 0.1, and

frequencies of 1, 5, and 10 Hz. Figure 5.3 compares predictions with experimental EFCP

rate data taken from a study by Dawson and Pelloux) 3 The SCC data used were for -259

mVscz; this is similar to the free corrosion potential (-239 mVscE) measured for ELI Ti-6AI-

4V during the CMOD experiment discussed in Chapter 4, and is assumed relevant to the

Dawson and Pelloux experiments with standard grade Ti-6A1-4V.

As seen in Figure 5.3, the linear superposition model reasonably predicts the effect

of frequency for AK values where Km_x is above K,scc (23 MPa4"m). Below this threshold,

linear superposition substantially underpredicts EFCP rates. The partial accuracy of the

model can be attributed to the frequency "crossover" effect and "cyclic" SCC. Above the

AK value where Km_ is equal to Kisco/_K is always above AKsc c. Above AKscc, da/dN

increases as frequency decreases, a result reasonably predicted by linear superposition.

Below the AK values where Km_x is equal to K_scc, da/dN decreases with decreasing

frequency; this trend is opposite that expected by linear superposition. Bucci 42applied the

superposition model to Ti-8AI-IMo-IV (MA), in 3.5% NaC1 and found similar results.

The linear superposition model was utilized to predict the effect of frequency on

daJdN for Ti-6A1-4V (MA)/NaC1 at a constant I_K of 25 MPa4"m and R of 0.1. The same

inert environment mechanical fatigue data and SCC velocity data for Ti-6AI-4V were

utilized, as well as the same equation constants for the Forman and Sigmoidal Equations.

Da/dN was predicted over a range of frequencies and compared to the data from Dawson and

Pelloux. 33 Figure 5.4 is a plot of linear superposition predictions compared to experimental
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data, which shows that the model is accurate for frequencies greater than 1 nz. The Dawson

and Pelloux study did not, however, consider the important case of EFCP at lower

frequencies, nor the important effects of electrode potential. Linear superposition is, of

course, not accurate for the ELI grade of Ti-6A1-4V. The interpolative model is tested next.

Dawson and Pelloux

Interpolative Model

Standard Grade Ti-6AI-4V (MA)

The interpolative model implemented in UVAFAS was tested using data from

for Ti-6A1-4V(MA) in a 3.5% NaC1 solution33; conditions were
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constant except for f, thus all of the equation parameters were expressed as a function of

frequency. To test the model, data for frequencies of 1 and 10 Hz were fit to the Forman

Equation with and without closure, the SINH Equation, and the Sigmoidal Equation.

Since two data sets were used, the equation parameters were related to two loading

variables, frequency and either the hold time or the stress ratio, even though x equalled zero

and R was constant. Using interpolation constants determined from these two relationships,

equation parameters were interpolated to describe EFCP rates at a frequency of 5 Hz and a

range of AK values. In all of the tests, Kc was entered as 135 MPa¢'m. The values of AKth

were 12.0 MPa¢'m for 1 Hz and 8.0 MPa4"m for 10 Hz; AKth was interpolated for 5 Hz.

These values for Kc and AI_ were optimized using the cubic approximations (Section 2.2.3)

applied to NaC1 FCP rate data. The parameter _ was 2.5, while SmJoo was 0.3. For all of

the data discussed in this section, the units for da/dN are mm/cycle, while the units for AK

The equation parameters determined by the model can only be used with theseare MPa¢'m.

units.

All of the equation parameters were interpolated using the logarithmic form of the

frequency dependence. When the interpolative model was originally developed using the

data from Dawson and Pelloux 33, this frequency dependence was the only form available.

The form was selected because it was known that "cyclic" stress corrosion cracking occurs

in standard grade Ti-6AI-4V, and that da/dN increases as frequency decreases for AK values

above A_scc. The logarithmic form of the frequency dependence predicts this trend in da/dN.

For AK values below AKscc, da/dN decreases as frequency decreases; this trend is opposite

that expected using the logarithmic frequency dependence, thus the model will overpredict
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da/dNratesasfrequencydecreases,andthemodelwill beconservative.This is assuming

thatthecoefficientsin the interpolationfunctionsarepositive.A negativecoefficientwould

yield theoppositetrend.

Thevaluesof AI_ were optimized using the cubic approximation. Note that the data

in Figure 4.12, however, do not extend to low growth rates. Typically,_ AI_h is defined for

growth rates less than 10 "7 mm]sec, the Dawson and Pelloux 33 data only extend to 10 .5

mm/sec. This is two orders of magnitude faster than that associated with threshold behavior,

thus the '_h values calculated by the cubic approximation are not accurate. According to

the cubic approximation, AI(th is being reached at crack growth rates between 10 .5 and 10 4

mm/sec, which is incorrect. This inaccuracy in the values of AKth means that the model

cannot be used to interpolate trends in fatigue behavior in the near threshold regime, the

model can only be used to predict trends in fatigue behavior for AK values within the

establishing data base. The current analysis was limited in this regard. Input AKth

parameters, are in fact, more likely to equal AKscc. This problem is corrected if more data

in the near threshold regime are fit to the cubic approximation.

The first equation tested was the Forman Equation with closure. Three cases were

studied, (1) fitting C and n, with p entered as 0.25 and q as 0.75, (2) fitting C and n, with p

and q entered as 2.0, and (3) fitting C, n, p, and q. The values ofp and q of 0.25 and 0.75

were taken from the NASA FLAGRO material files for Ti-6AI-4V (MA). The case of p =

q = 2.0 was recommended by Newman 49 for use when values are not definable from wide

range da/dN-AK data. The values determined for the equation parameters, as well as the

resulting interpolation functions are given in Appendix B for all of the crack growth rate



theparameterC_was0.5.

areshownin Figure5.11.

seenin Figure5.12.
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equationsusedto modeltheDawsonandPellouxdata.Resultsareshowngraphicallyin

Figure5.5, Figure5.6,andFigure5.7.

TheFormanEquationwithoutclosurewastested.Again,threecaseswerestudied,

(1) fitting C andn with p enteredas0.25andq as0.75,(2) fitting C andn with p andq

enteredas2.0,and(3) fitting C, n, p, andq. In all threecases,m was1.0. Resultsare

shownin Figure5.8, Figure5.9,andin Figure5.10.

TheHyperbolicSineEquationwastestedfitting the parameters C2, C3, and C4 while

The case of C2 = 0.5 was recommended by Hadtos. 2_ Results

Finally, the Sigmoidal Equation was tested, yielding the results

In order to determine the accuracy of each model, the coefficient of determination (r2)

was calculated for each of the interpolated equations for f= 5 Hz shown in Figures 5.5

through 5.12. These values are summarized in Table 5.1. The Forman Equation (with and

without closure) yielded the best results when fitting all four parameters; results were

slightly less accurate when fitting C and n with p = q = 2.0. The inclusion of crack closure

terms did not improve the fits. The least accurate results occurred when using the Forman

Equation with C and n fit, p = 0.25, and q = 0.75. This is expected since these values ofp

and q were determined using data for moist air. 6 The Sigmoidal Equation and the Hyperbolic

Sine Equation both displayed accuracy similar to the Forman Equation with C, n, p, and q

fit.

As seen by the results presented in Figures 5.5 through 5.12 and Table 5.1, the

logarithmic form of the frequency dependence was able to accurately interpolate trends in
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Equation r2

Forman Equation without Closure (C, n, p, q fit) 0.9880

Forman Equation with Closure (C, n, p, q fit) 0.9866

Hyperbolic Sine Equation (C2, C3, C4 fit, C1 = 0.5) 0.9832

Sigmoidal Equation (B, P, Q, D, fit) 0.9717

Forman Equation without closure (C, n, fit, p = 2.0, q = 2.0) .0.9155

Forman Equation with closure (C, n, fit, p = 2.0, q = 2.0) 0.9114

Forman Equation with closure (C, n, p = 0.25, q = 0.75) 0.8706

Forman Equation without closure (C, n, p = 0.25, q = 0.75) 0.8256

fatigue behavior for standard grade Ti-6A1-4V (MA) within the establishing data base. The

accuracy of the frequency dependence for interpolation outside the establishing data base was

not tested. Notice that the interpolated data 0 c = 5 Hz) display the frequency "crossover"

effect exhibited by the standard grade Ti-6AI-4V. This is due to the fact that the equations

fit to the data for frequencies of 1 and 10 Hz displayed the "crossover" effect, and not due

to the nature of the logarithmic form of the frequency dependence. The interpolative model

assumed that the crack growth rates for f= 5 Hz would lie between the crack growth rates

entered for frequencies of 1 and 10 Hz.

Notice in Figures 5.5 through 5.12 that the interpolated data for f= 5 Hz lie closer to

the data for a frequency of 10 Hz than a frequency of 1 Hz. This is due to the logarithmic

nature of the frequency dependence. The interpolated data often seem to slightly

underpredict the measured FCP rates in the middle to upper regions of the data. If a linear
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dependence had been utilized, the interpolated growth rates would have increased, as the

interpolated data Or= 5 Hz) were shifted vertically, closer to the fitted data forf -- 1 Hz. The

model would have then slightly overpredicted the FCP rates forf = 5 Hz, resulting in a more

conservative model.

5.2.2 ELI Grade Ti-6AI-4V (MA)

5.2.2.1 Modeling the Effect of Stress Ratio

To model the effect of stress ratio, data were taken from a study by Gangloffand Kim

for Ti-6A1-4V (MA,ELI) in moist air and a 1.0% NaC1 solution (-500 mVscE). 9 Conditions

were constant except R, thus all of the equation parameters were expressed as a function of

the stress ratio. Data exist for a frequency of 5 Hz, and stress ratios of 0.1, 0.4, and 0.7 for

both environments. To test the model, data for R of 0.1 and 0.7 were fit to the Sigmoidal

Equation, and the parameters were set equal to the appropriate interpolation functions given

in Appendix C. Using these functions, the equation parameters, including AKth were

interpolated for a stress ratio of 0.4. EFCP rates were calculated over a range of AK values

and compared to data. Kc was entered as 78 MPa¢'m, based on the results in Section 4.1.1.

AK, h was calculated from AK o which was taken from the NASA FLAGRO materials files

as 3.8 MPa(m for both environments. The value is based on FCP rates in moist air, and is

not relevant for other environments. The value was utilized because threshold data were not

available for ELI Ti-6A1-4V (MA), and because the value of the threshold would not have

a large effect on the quality of the fitted equations. Results are shown in Figure 5.13 for the

moist air environment, and in Figure 5.14 for the 1.0% NaCl solution (-500 mVsc E). The
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coefficientsof determinationfor the interpolateddatawerecalculated;r2was0.7465for

moistair and0.8794for 1.0%NaC1(-500mVscE).

The effect of stress ratio can be accounted for with the Forman Equation (Equation

2.2) including a plasticity induced crack closure strategy. To analyze the accuracy of this

method, the data for R = 0.1 in both the moist air and the 1.0% NaCI solution (-500 mVscE)

were fit to the Forman Equation with closure; fitting C and n, as well as fitting C, n, p, and

q. Two cases were analyzed for fitting C and n. In the first test, the value of p was entered

as 0.25, while q was 0.75. These values were taken from the NASA FLAGRO materials files

for Ti-6A1-4V. In the second test, p and q were entered as 2.0. Using these fitted

coefficients, da/dN was predicted for stress ratios of 0.4 and 0.7. K c was 78 MPa4"m for all

three stress ratios; only the value of AKth and the crack closure function, f, varied as a

function ofR. nI_ was calculated from nKo, which was taken from the NASA FLAGRO

materials files as 3.8 MPa4"m, a value determined for moist air. The fitted values for the

equation constants are listed in Tables 5.2 through 5.4. Table 5.5 lists the values for the

crack closure function, f, and AKth as functions of stress ratio. The results for moist air are

shown in Figure 5.15; results for 1.0% NaC1 (-500 mVscE) are shown in Figure 5.16.

Table 5.2: Forman Equation Constants (p = 0.25, q = 0.75)*

Environment

Moist Air

1.0% NaCI

C

0.2425 x 10.9

0.6612 x 10 "9

4.958

4.955

" The da/dN versus 6K data input to the model were in units ofmm/cycle and MPa4"m,

respectively. The constants in Table 5.2 through 5.5 can only be used with these units.



Table 5.3: Forman Equation Constants (p = 2.0, q = 2.0)

Environment C n

Moist Air 0.3679 x 10 .8 3.937

111

1.0% NaC1 0.1477 x 10.7 3.775

Table 5.4: Forman Equation Constants (C, n, p, q fit)

Enviroranent C n

Moist Air 0.533 X 10 .23 20.05

1.0% NaC1 0.208 x 10 15 11.94

P q

-13.48 -38.44

-6.41 -16.15

Table 5.5: Crack Closure Function and AI_h

Stress Ratio, R f nKth (MPa4"m)

0.1 0.2869 3.59

0.5 0.4392 2.65

0.7 0.6982 1.43

The Forman Equation with closure describes da/dN versus AK most effectively for

R = 0.1 when all of the equation parameters (C, n, p, and q) are fit. For the air case, r2 was

0.9798 when fitting C, n, p, and q. When fitting just C and n, r2 was 0.8478 when p was 0.25

and q was 0.75, and 0.8839 wlaen p and q were equal to 2.0 For the 1.0% NaC1 environment,

the coefficient of determination was 0.9648 when fitting C, n, p, and q. When fitting just C

and n, the coefficient of determination was 0.9320 when p was 0.25 and q was 0.75, and

0.9521 when p and q were set to 2.0. When fitting C, n, p, and q, however, the equation is

not always accurate outside the range of the fitted data and often becomes sinusoidal. A
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Figure 5.15: Fitted and predicted da/dN values for Ti-6AI-4V (MA,ELI) using the Forman

Equation with closure for R = 0.1, 0.4, and 0.7 in moist air for f= 5 Hz.
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Figure 5.16: Fitted and predicted da/dN values for Ti-6A1-4V (MA,ELI) using the Furman

Equation with closure for R = 0.1, 0.4, and 0.7 in 1.0% NaCI (-500 mVscE) for f= 5 Hz.
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sinusoidalrelationshipbetweenda/dNandAK is nonsense physically. This problem is

corrected by fitting a larger range of data to the equation. The Forman Equation with closure

predicted the effect of the stress ratio accurately, via a plasticity induced crack closure

strategy, when the parameters C and n were fit, with p and q fixed in both the moist air and

1.0% NaCI (-500 mVscE) environments.

The Forman Equation with closure was developed to predict the effect of crack

closure in moist air. The data shown in Figure 5.16 for the 1.0% NaCI solution (-500 mVscE)

also show good agreement. The Forman Equation should not work for a SCC-sensitive

linear superposition case where R affects da/dN by an environmental mechanism not related

to plasticity induced closure. The ability of the Forman Equation to accurately predict the

effect of stress ratio on EFCP rates via a plasticity induced closure strategy thus strengthens

the statements made in Section 4.1.2 that stress corrosion cracking will not affect time or

R dependent EFCP of Ti-6A1-4V (MA, EL1) for the range of stress intensities used in this

study (5-45 MPa4m); the only stress ratio effect on da/dN is plasticity induced closure. The

Forman Equation with closure is also effective for Ti-6A1-4V (MA,ELI) because the closure

levels measured in both air and NaC1 show that plasticity is the dominant factor.

5.2.2.2 Modeling the Effect of Frequency

The interpolative method has been applied to model the effect of frequency on da/dN

in Ti-6AI-4V (MA,ELI) in aqueous chloride solutions. Data for Ti-6A1-4V (MA,ELI) in a

1.0% NaC1 solution (-500 mVscE) at a frequency of 5 Hz and R of 0.1 were fit to the Forman

Equation with closure. The parameter ,, was 2.5, while Sm_/o o was 0.3. The parameters C

and n were fit, while p and q were 2.0. Kc was 78 MPa4"m, while AK_ was calculated from
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AKo, which was entered as 3.8 MPa¢'m, for the 5 Hz data, and interpolated for the 40 Hz

data. tXKo was taken from the NASA FLAGRO materials files, and is based on results for

moist air, not a 1.0% NaC1 solution. Using the resulting interpolation functions, given in

Appendix C, FCP rates were calculated over a range of AK values for a frequency of 40 Hz

and R of 0.1.

When the interpolative model was originally developed, only the logarithmic form

of the frequency dependence was available. This form of the frequency dependence was

applied to the data from Dawson and Pelloux 33,and was able to interpolate trends in the data

accurately. This same logarithmic dependence was applied to the data for ELI grade Ti-6Al-

4V (MA) generated during this research, and yielded unacceptable results. When entering

data for a frequency of 5 Hz and interpolating data for 40 Hz, the model substantially

underpredicted EFCP rates. Also, when the data for a frequency of 5 Hz were entered into

the model, the fitted values of C and n were positive. This resulted in a positive coefficient

in the interpolation functions, thus the interpolation functions predicted the wrong trend in

da/dN for this alloy class. Since this logarithmic form of the frequency dependence was

unacceptable, another function had to be developed. Based on the results of the constant AK

and variable frequency experiment discussed in Chapter 4, where da/dN was proportional to

f0.t to0.1s,a frequency dependence of the formf • was selected (u is a user specified constant).

This function allows the user to control the frequency dependence; if a linear superposition

dependence is desired, the user can enter a as -1.0.

Since only one data set was entered into the model, it is imprecise to call the

results an interpolation. In actuality, by entering the data for a frequency of 5 Hz, and
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specifyingthatda/dNisproportionaltof 0.1,themodel is forcing curves of da/dN versus AK

data to pass through the results of the frequency scans presented in Chapter 4. Since the

variable frequency experiments revealed only the magnitude of da/dN as a function of

frequency for two specific AK values, only the parameter C was varied from frequency to

frequency, according to the following equation:

C -- 1.257 x 10 -s f o.1 (5.3)

The parameter n was held constant at 3.8, the fitted value forf = 5 Hz. AI(th Was also held

fixed at 3.6 MPa4"m for all frequencies, the value calculated from AKo. Shown in Figure

5.17 are predictions compared to experimental data for Ti-6A1-4V (MA,ELI) in a 3.5% NaCI

solution (-500 mVscE),fof 40 Hz, and R of 0.1. As seen in the figure, the model accurately

predicts the effect of frequency. Figure 5.18 presents predictions of da/dN versus AK for

frequencies in the range of 0.03 to 100 Hz.
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Chapter 6: Discussion

This chapter presents a discussion of the experimental results presented in Chapter

4, as well as the modeling results presented in Chapter 5. The SCC and corrosion fatigue

behavior for ELI and standard grade Ti-6A1-4 V are compared, and reasons are presented

for differences in their behavior. The capability of the computer models to effectively model

EFCP rates in Ti-6AI-4V is discussed

6.1 EAC of Ti-6AI-4V (MA,ELI)

6.1.1 Monotonic Load

The EL1 grade of mill-annealed Ti-6A1-4V studied during this research exhibits a

greater resistance to SCC in aqueous chloride than standard grade Ti-6A1-4V. ELI Ti-6A1-

4V (MA) in a 3.5% NaC1 solution (-500 mVscE) exhibits a Kra between 48 and 55 MPa(m;

this value is much higher than K_scc of 23 MPad'm reported by Dawson and Pelloux for

standard grade Ti-6A1-4V in essentially the same environment. 33 The ELI grade specimens

were held at a fixed electrode potential of-500 mVsc E because titanium alloys exhibit

maximum susceptibility to SCC at -500 mVsc E in solutions containing CI ions. 47

One issue addressed in order to understand the high values of Krn presented in Figure

4.5 is loading rate. Insight into the issue of loading rate can be obtained if the environmental

fatigue behavior of Ti-6A1-4V (MA,ELI) and Ti-6A1-6V-2Sn (MA) are examined. Ti-6A1-

6V-2Sn exhibits the frequency "crossover" effect 4°, ELI grade Ti-6A1-4V does not. Fatigue

involves the higher strain rate regime, and if Krn was significantly lower than the measured

minimum of 48 MPad'm at this higher strain rate, the ELI grade would exhibit the frequency

"crossover" effect. Since the ELI grade does not exhibit the "crossover" effect, KrH remains
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above the Klscc value measured by Dawson and Pelloux, 33 and is not significantly lower than

the measured minimum at higher strain rates. This conclusion is supported by the K_ values

measured at a stress intensity rate of 0.01 MPa4"m/s. Several experiments should still be

conducted at higher loading rates for the ELI Ti-6A1-4V to address this issue.

One issue addressed in order to understand the increased SCC resistance of the ELI

grade is the difference in chemical composition between the two grades. Table 6.1

compares the chemical compositions of ELI and standard grade Ti-6A1-4V. The

compositions for the standard grade are given in weight %, either as a range of percents or

the maximum percent allowed, s° while the composition of the ELI grade is for the rolled

plate used during this research. As seen in the table, the ELI grade Ti-6A1-4V has

significantly less iron (Fe), oxygen (O), nitrogen (N), carbon (C), and hydrogen (H).

Table 6.1: Chemical Compositions of EL1 and Standard Grade Ti-6AI-4V

Major Elements

Standard Grade ELI Grade

AI 5.5 - 6.75 6.17

V 3.5 - 4.5 4.33

Fe 0.3 0.19

Interstitial Elements

Standard Grade ELI Grade

O 0.20 0.12

C 0.10 0.025

N 0.05 0.011

H 0.015 0.0055
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Thea phasein a + 13alloysis susceptibleto SCCin aqueouschloride 47, as governed

by the aluminum, oxygen, and tin contents. Figure 6.1 shows the effect of oxygen content

on SCC kinetics in Ti-6AI, an a titanium alloy. As quenched specimens with an oxygen

content of 0.05% were immune to SCC in 0.6M KC1. Susceptibility to SCC was induced by

increasing the oxygen content to 0.15%; increasing the oxygen content to 0.30% further

increased the susceptibility. Aging the specimens with an oxygen content of 0.05% at 425"C

induced SCC, and accelerated SCC in the alloys with a higher oxygen content. The

susceptibility of the specimens with an oxygen content of 0.05%, aged at 425"C, was caused

by the precipitation ofTi3A1 (a2). At high aluminum contents (above = 5%), a2 precipitates

during low temperature aging in the (_t + _2) field. These precipitates lower K_scc and

increase SCC velocity. 47

Since the alloy studied by Dawson and Pelloux 33and the ELI grade studied during

this research are similar in heat treatment (neither alloy was aged), aging is not responsible

for the difference in SCC behavior. Strain rates effects are also not responsible. Since the

major difference between the ELI grade and the alloy studied by Dawson and Pelloux 33is

the oxygen content, the oxygen content seems to be the controlling factor in determining the

SCC resistance of the higher purity alloy.

6.1.2 Fatigue Loading

Figures 6.2 and 6.3 compare da/dN versus frequency for standard and ELI grade Ti-

6AI-4V (MA) in a 3.5% NaCI solution for AK values of 16 and 22 MPaq'm at R = 0.1. The

data for standard grade Ti-6A1-4V (MA) were taken from a study by Dawson and Pelloux. 33

The data for Ti-6A1-4V (BA) were taken from a study by Chiou and Wei. 44 The data for the
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ELI grade were for a fixed electrode of -500 mVscE, while the standard grade data were for

a free corrosion potential of about -240 mVsc E. When data could not be located for the exact

AK values needed, values were estimated from trends using a Paris Equation. As seen in the

figures, at both AK levels of 16 and 22 MPa4"m, da/dN increases with increasing frequency

for the ELI grade. The standard grade exhibits a frequency dependence where da/dN

decreases as frequency decreases below a critical frequency, and daJdN decreases as

frequency increases above the critical frequency. This is consistent with the frequency

"crossover" effect? 3 The behavior exhibited by the ELI grade is not consistent with the

frequency "crossover" effect. It should be mentioned that the data for standard grade Ti-6At-

4V seen in Figures 6.2 and 6.3 are limited, and do not extend over a wide range of

frequencies. The maximums exhibited by the standard grade could, in fact, be due to scatter

in the data. This seems unlikely, since the alloy is known to exhibit the frequency

"crossover" effect. 33,41

One possible explanation for the failure of the ELI grade to exhibit the frequency

"crossover" effect is the increased SCC resistance. Standard grade Ti-6A1-4V (MA) exhibits

a K1scc of 23 MPa4"m 33, and a AK of 16 MPa4"m is below AKsc c for frequencies below 2 Hz,

while a AK of 22 MPa,/'m is above AKscc, as seen in Figure 4.13. The minimum value for

KT, determined during this research for the ELI grade Ti-6A1-4V (MA) was 48 MPa4"m; at

both the highand low AK value, AK is above AKscc for all of the frequencies tested, as seen

in Figure 4.22. Since the frequency crossover effect is associated with the onset of "cyclic"

SCC and the AK values did not reach AKscc for the ELI grade Ti-6AI-4V (MA), "cyclic"

stress corrosion cracking did not occur.
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Thisexplanationis supportedby thedataseenin Figures6.2and6.3. At bothAK

levels,especiallythelowervalue,theFCPratesmeasuredin theELI gradeTi-6AI-4V(MA)

are lower thanthosemeasuredin thestandardgrade.TheFCPratesmeasuredin theELI

gradearehigherthanthoseseeninTi-6A1-4V(BA), consistentwith theliterature.42Cyclic

SCCis not occurringin the ELI grade,and the ELI grade is thus. cracking slower than

standard grade Ti-6A1-4V (MA). This implies that cyclic SCC is not controlling the

environmental fatigue behavior of the ELI grade below K_.

6.2 Modeling EFCP of Ti-6AI-4V (MA,ELI)

6.2.1 Linear Superposition Model

The linear superposition model incorporated in UVAFAS.EXE has proven effective

for certain, albeit limited, material/environments combinations where the alloy is extremely

prone to SCC and (da/dN)stres s _or_osio,is significantly greater than (da/dN)fatigue. This is

achieved when Kiscc is low and (da/dt),nvirom,nt is rapid, or alternatively if (da/dt)_nvirunm,nt is

slow butf is also very slow or _ is prolonged.

The linear superposition model is effective for standard grade Ti-6A1-4V (MA) in a

3.5% NaCI solution for AK values where Km_x is above Kiscc and forf > 1 Hz. The ELI

grade, however, demonstrates the limitations and inaccuracies of the linear superposition

model. The linear superposition model incorrectly assumes that da/dN will significantly

increase as frequency decreases. Specifically, the model assumes da/dN will be proportional

tof -_. The ELI grade Ti-6A1-4V exhibits da/dN which increases mildly with frequency;

da/dN is proportional to f0.1 to0.1s. Linear superposition also assumes the alloy will be prone
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to SCC. The ELI grade Ti-6AI-4V (MA) exhibits a resistance to SCC, with KTH values

between 48 and 55 MPa4-m, compared to K_scc of 23 MPa4"m for the standard grade. 33 This

results in a small (da/dN)stress corrosion,and thef dependence of (da/dN)totaJ is not predicted.

The frequency independent da/dN, low (da/dt)e,v_ro,,mCnt,and low SCC susceptibility exhibited

by the ELI grade demonstrate that linear superposition is not effective. _ ....

6.2.2 Interpolative Model

The interpolative model developed during this research has proven effective in

modeling the effects of frequency and stress ratio on FCP rates in standard and ELI grade Ti-

6A1-4V when the load characteristics where data were interpolated are within the

establishing data base. There are problems, however, associated with the use of an

interpolative model.

One major problem is the difficulty encountered with modeling FCP data in the near

threshold regime. Fortunately, the AK values for the standard and ELI grade where data

were interpolated were all above threshold. Presently, the interpolative model allows the

user to enter AKth manually, calculate AKth using an equation from NASA FLAGRO, or

optimize the value of AI_ based on input data. The equation contained in NASA FLAGRO

is accurate only for metals in moist air, thus this value is not accurate when modeling EFCP

data. The cubic approximation is accurate, however, EFCP rate data are not easily obtained

in the near threshold regime particularly for low loading frequencies. The 1 Hz experiment

discussed in Chapter 4 required approximately 35 days to complete. The experiment was

stopped when the growth rate was approximately 10 .6 mm/sec, at least an order of magnitude
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faster than those typically associated with threshold. The long times involved in obtaining

threshold data illustrate the difficulties involved in obtaining EFCP rate data in the low _ K

regimes.

Fortunately, small changes in the value of AI_ do not greatly affect the fitted values

of the equation parameters in the Forman Equation, or have a large effect on the quality of

the fitted equation for high ZXKvalues. Also, the interpolative model will function if tXKscc

is input into the model instead of AK_, the model will simply not interpolate trends in fatigue

behavior for the lower AK regime. Small changes in the value of AI_ do seem to have a

large effect on the parameter values in the Sigmoidal Equation. This is one reason the

Forman Equation was the primary crack growth rate equation utilized in the interpolative

model.

Another problem involved in using the interpolative model to describe EFCP rates

in Ti-6Al-4V is the empirical nature oft_he model. A empirical model requires that a large

data base be maintained, and that experiments be conducted for the material/environment

system where fatigue behavior is to be modeled. More importantly, the model assumes that

the damage mechanism for fatigue will not change within or outside the establishing data

base, which is not always accurate.

This change in the damage mechanism can be seen by examining standard grade Ti-

6AI-4V (MA). The interpolative model was effective for Ti-6A1-4V (MA) in 3.5% NaCI,

however, the model ignores one of the primary factors which controls EFCP rates in a + 13

titanium alloys in aqueous chloride solutions, AKscc. The damage mechanism for

environmental fatigue changes in Ti-6A1-4V (MA) above and below AKscc. Below AKscc,
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daJdNis perhapscontrolledby thestabilityof thepassivefilm at thecracktip. Thus,as

frequencydecreases,andthepassivefilm is rupturedlessoften,da/dNdecreases.Above

6 KSCC, the stability of the passive film no longer controls the fatigue behavior. Instead,

hydrogen embrittlement is perhaps the controlling factor. Thus, as frequency decreases and

more time is allowed for hydrogen embrittlement to occur, da/dN increases.

This change in the damage mechanism is not considered by the current interpolative

model. For example, the model predictions shown in Figure 5.18 assume that da/dN will

increase as frequency increases for all frequencies and all AK values where data were

interpolated. While this trend in da/dN as a function of frequency is accurate over a large

portion of the AK values where data were interpolated, the model predictions are not accurate

at the high AK values, where "cyclic" SCC will occur. For these AK values, daJdN will

decrease as frequency increases, a trend not exhibited by the model predictions.

For Ti-6AI-4V, the current modeling procedure is not sufficient to describe the

complex dependence ofda/dN on AK, and the important effects of AKsc c and "cyclic" SCC.

The following procedure is thus recommended for standard and ELI Ti-6AI-4V in NaC1.

First, determine K_c from a constant CMOD rate experiment with a precracked specimen

fractured in moist air. Next, conduct a constant CMOD rate experiment with the alloy of

interest in NaC1 and where the load is increased monotonically to a stress intensity level of

45 MPa4"m in 30 minutes. If cracking does not occur, hold the load constant for 100 hours,

and measure crack extension with DCPD or compliance.

Using the data from Dawson and Pelloux 33, construct a plot of AKscc as a functions

of frequency, as seen in Figure 4.13. Conduct K-gradient fatigue experiments in moist air
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andNaC1at afrequencyof 40Hz to producewiderangeda/dN-AKdata. Collectdatafor

crackgrowth ratesabove4 x 10.7mm/cycle. Next, conducta secondsetof K-gradient

experimentsin moistair andNaC1for afrequencyof 0.5Hz, andgrowthratesabove10.5

mm/cycle.Finally, conductavariablefrequencyexperimentwhere/_Kisheldconstantat

either12or25MPa4"m,andfrequenciesrangebetween0.008and100Hz. Usingtheresults

of theK-gradientfatigueexperiments,andthevariablefrequencyexperiment,thedatafor

AKsccasa functionof frequencytakenfrom DawsonandPellouxcanbe revised. For

example,the datacanbescaledsothat at the lower frequencies,AKscc approaches the

correct value of (1-R)Kna for the titanium alloy being studied.

Once the correct ZXKscc as a function of frequency is developed, a methodology or

algorithm which correctly describes the AKscc transition and "cyclic" SCC can be

implemented. This algorithm would have to describe the complex dependence of da/dN on

AK illustrated in Figure 6.4. The algorithm would involve four interpolation functions.

First, ZXKthand AKscc would have to be written as a function of frequency. Next, da/dN for

AK values below AKscc would be written as a function of frequency, as would da/dN for AK

values above AKscc. These interpolation functions are:

AKth = fl (f) (6.1)

A Kscc = f2 (f) = ao f v (6.2)

da

dN = a2 f f) A K > A Ksc c (6.3)



da

-_ = al f a A K < A Ksc c (6.4)
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where V (_' < 0), a (a > 0), and 13(13 < 0) are empirical constants, as are a0, al, and a2. Given

the lack of near iXKth environmental FCP data, fj is unknown.

Currently, there are no crack growth rate equations contained in the interpolative

model (UVAFAS) which exhibit the da/dN-AK behavior seen in Figure 6.4. Instead, either

a multiple power law equation, or a set of crack growth rate equation could be utilized. Four

separate power law segments, or crack growth rate equations would be needed. One segment

would be needed for the threshold regime, one for the region between threshold and AKscc,

one for the data at AKscc, and one for growth rate above AKscc. If a multiple power law

equation was utilized, the locations of the segments corresponding to AKth and/IKsc c could

simply be shifted horizontally as a function of frequency according to Equations 6.1 and 6.2.

The segments for the region between/_Kth and/IKscc, and the segment for data above AKsc c

could be shifted vertically according to Equations 6.3 and 6.4. The locations of the

transition points between each segment could also be calculated using Equations 6.1 through

6.4.

6.3 Implications for Fatigue Life Prediction Including EFCP

The computer models developed during this research have proven effective for

certain material/environment systems. The linear superposition model is effective for limited

cases where the alloy is extremely sensitive to SCC, and (da/dN)_ss co,osio, is significantly
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Figure 6.4: Schematic illustrating daJdN as a function of frequency for Ti-6A1-4V in moist
air and NaC1 environments.

greater than (daJdN)fatigue. If these material/environment systems are relevant to aerospace

applications, the linear superposition program can be implemented as a NASA FLAGRO

module. This approach will describe the effects ofR, f, z, wave form, and AK on EFCP

rates.

The interpolative model is effective for material/environment systems where the

damage mechanism for environmental fatigue does not change within the establishing data

base. The interpolative model is able to interpolate trends in fatigue behavior based on load

characteristics, the model cannot be used for widespread prediction of daJdN versus AK

outside the establishing data base.
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The interpolative model can be incorporated in NASA FLAGRO. The model

requires an extensive data base of da/dN versus AK data for various material/environment

combinations and a wide range of loading variables. Incorporation of the model in FLAGRO

would require the generation of this EFCP data for material/environment systems relevant

to aerospace applications.

All of the models used in this research are empirical, and must be utilized with

caution. They require a large data base, and are only useful for well-characterized

material/environment systems. In order to effectively model and predict EFCP rate data for

a wide range of material/environment systems, a more mechanistic approach needs to be

developed. Mechanistic models based on an improved understanding of the parameters

which affect EFCP must be developed and incorporated into the NASA FLAGRO program.
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7.1

7.1.1

1.

.

.

.

°

Conclusions

Environmental FCP Rate Modeling (UVaFAS)

The computer program UVAFAS.EXE provides a reasonable method for

modeling time dependent EFCP rates as function of stress ratio, frequency,

and hold time.

The algorithms used in the computer program UVAFAS.EXE have been

bench marked against exact analytical solutions, as well as literature results.

The computer models contained in the program UVAFAS.EXE are effective

in characterizing EFCP, and can be incorporated in NASA FLAGRO.

EAC of Ti-6AI-4V (MA,ELI)

Ti-6A1-4V (MA,ELI) exhibits a greater resistance to SCC than standard grade

Ti-6A1-4V (MA) due the lower oxygen content of the ELI grade. Standard

Ti-6A1-4V exhibits a K_scc of 23 MPalm in 3.5% NaC1, while ELI Ti-6A1-

4V exhibits K_ values of 48 and 55 MPalm depending on loading rate. Ti-

6AI-4V (MA,ELI) exhibits a slower (daJdt)environment(of order 10 .5 mm/sec or

less) than standard Ti-6A1-4V.

A 1.0% NaCI solution (-500 mVscE) is detrimental and enhances FCP rates

in Ti-6A1-4V (MA,ELI) by approximately two fold compared to fatigue in

moist air.

ELI Ti-6A1-4V does not exhibit the frequency "crossover" effect for AK
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.
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7.1.3

°

values less than 25 MPa4"m and frequencies in the range of 0.03 to 40 Hz.

Standard Ti-6A1-4V exhibits the frequency "crossover" effect.

Ti-6A1-4V (MA,ELI) exhibits a mild frequency dependence for AK levels of

12.5 and 25 MPa4"m in a 3.5% NaC1 solution (-500 mVscE) for R = 0.1. For

both/XK levels, da/dN increases proportional tof 0.1to0.2

The frequency dependence of Ti-6A1-4V (MA,ELI) is governed by the

increased resistance to SCC. Standard Ti-6A1-4V exhibits cyclic SCC and

FCP rates which are faster than ELI Ti-6A1-4V, where cyclic SCC does not

occur.

The crack closure

plasticity induced

levels measured during fatigue are consistent with

closure. For AK above 10 MPa4"m, I_l/I_ x is

approximately 0.3, consistent with model predictions by Newman for

plasticity induced closure.

Crack closure levels are independent of environment; moist air, a 1.0% NaC1

solution (-500 mVscE), and a 3.5% NaC1 solution (-500 mVscE) yield the

same levels for Kcl/Kmax-

Crack closure levels increase as AK decreases for AK levels below

approximately 10 MPa4"m. This rise in closure could be due to a change

from plasticity induced to roughness or oxide induced closure as the crack tip

opening displacement decreases.

Modeling EFCP

The linear superposition model is effective for limited material/environment

135
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systems where the alloy is extremely sensitive to stress corrosion cracking

and the contribution of stress corrosion to crack growth is significantly

greater than that of inert environment mechanical fatigue. This is achieved

when the loading frequency is low, the fatigue cycle stress intensity is

higher than Klscc, and (da/dt)enviromen t is relatively rapid.

Linear superposition is not effective for describing the fatigue behavior of Ti-

6AI-4V (MA,ELI) in aqueous chloride solutions, since the alloy exhibits a

high value for Kru and low (da/dt)e,viro_cnt in aqueous chloride, as well as

near frequency independent da/dN. The model does work for standard Ti-

6A1-4V and Ti-8AI-1Mo-IV when I_x is above Kiscc.

The interpolative model can be effectively used to model EFCP when the

loading variables where data are interpolated lie within the range of the

establishing data base. The model is not likely to be effective for predicting

EFCP behavior outside the range of the establishing database.

Empirical models can be used to effectively model EFCP rates only for

particular material/environment systems where substantial data exist. They

cannot be used for widespread prediction of EFCP behavior.
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7.2 Recommendations for Future Work

7.2.1 EAC of Ti-6AI-4V (MALl)

The results generated during this research for the EAC behavior of Ti-6A1-4V

(MA,ELI) have raised questions that need to be addressed. First, the SCC resistance of the
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ELI gradealloyneedsto beexamined,andexplainedbasedonamorecarefulmetallurgical

examinationthanprovidedduringthisresearch.Theenvironmentalfatiguebehaviorof the

alloyneedsto beexaminedforothertime-dependentvariablesbesideloadingfrequency,and

experimentsneedto be conductedat frequenciesabove40 Hz to further explorethe

"crossover"effect. Theeffectof loadingwaveform andhold time needto beexplored.

Finally,amoredetailedclosureanalysisshouldbeconductedsothattherisein K_/Kmxat

low AK levels is explained and the role of environment is examined.

7.2.2 Modeling EFCP

The conclusions just discussed have led to the following recommendations for future

work in regard to modeling EFCP rates. The capability to calculate (da/dt)env_roment from

(da/dN)st_ corrosiondata should be critically assessed and perhaps incorporated into the linear

superposition model. This may improve the predictive capability of the model by generating

a better set of (da/dt)enviro_e,t data reflective of crack tip strain rates during fatigue. This

involves solving for (daJdt)environmentin the following equation:

.,....oo.o.,.n ¥ [r o] at (7.1)

The model should allow the user to choose between sinusoidal, ramp, or square wave forms

to represent K(t), and between a Pads Equation and double power law to represent

(daJdt)e,v_ro_e.t. The calculations can be completed using linear regression techniques when

(da/dt)e,v_o_ent is modeled by a Pads Equation, and a square wave form is utilized with R =

0. The problem quickly becomes more complicated and non linear when other equation and

wave forms are utilized.
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The functions utilized by the interpolative model need to be examined, to insure that

they predict the correct trends in fatigue data for a wide range of material/environment

systems as a function of hold time, particularly in titanium alloys. The effect of hold time

on da/dN was not examined during this study. Also, the multiple power law model needs to

be revised so that the methods used to define power law transitions are less subjective.
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Appendix A: University of Virginia Fatigue Analysis Software (UVaFAS)

The programs discussed in this thesis are available in executable form, along with the

source code. The models are contained in the program UVAFAS.EXE, a FORTRAN 77

program compiled using a professional compiler from WATCOM, Inc. To execute the

program, place the program disk in drive A:\ and type UVAFAS. A main menu will appear

which allows the user to select the appropriate model (linear superposition model,

interpolative model, or multiple power law model).

The speed of the program is increased if the program is executed from a hard drive.

To install the program on a hard drive, copy the files on the program disk into the directory

where the program will reside. The program must be executed from the DOS prompt, and

cannot be executed from the Windows environment, due to the memory requirements of the

program. The program uses the DOS/4GW DOS extender from Rational Systems.

The program files on the disk contain all of the necessary executable files, material

data files, and source code. These files are:

UVAFAS.EXE - executable form of the computer models, written in FORTRAN 77

DOS4GW.EXE - DOS extender from Rational Systems

NASMFC, NASMFM, USRMFC, USRMFM - materials files

The source code is contained in the self extracting file SOURCE.EXE. To extract the source

code, copy the file SOURCE.EXE into the directory or disk where the code is to reside, and

type SOURCE. The source code can be edited using any DOS or Windows ASCII text

editor.

The executable programs were compiled using a 32 bit, multi-platform FORTRAN
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compiler. The compiler should alleviate memory problems encountered in earlier versions

of the program which only utilized the first 640 K of conventional memory. The graphic

subroutines utilized by the program are specific to the compiler used to generate the program.

If the source code needs to be recompiled, the subroutines necessary to graph the da/dN

versus ZXK data, as well as certain other graphic subroutines must be edited.
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Appendix B: Interpolation Functions for Ti-6AI-4V (MA)

This appendix contains the values of the equation parameters and the interpolation

functions developed when modeling the data for Ti-6A1-4V (MA) taken from a study by

Dawson and Pelloux. 33 The first equation tested was the Forman Equation with closure.

Results for fitting C and n with p equal to 0.25 and q equal to 0.75 are shown in Table B. 1.

These function can only be used when AK has units of MPa4"m, and da/dN is in mm/cycles.

Table B.I: Forman Equation with Closure, fitting C and n (p = 0.25, q = 0.75)

Parameter

C

n

1 Hz 10 Hz

0.3818 X 10 -7 0.5709 X 10 -6

3.777 2.596

The following interpolation functions were developed:

IT* 1]
10 -6 log L 0.1 ]

03.1)

n = 4.551 log + 1 + 2.408 log L 0.1 J
(B.2)

IAKth = 15.406 log + 1 + 7.362 log L lB.3)

Next, the parameters C and n were fit while entering p and q as 2.0, resulting in the values

shown in Table B.2.



147

Table B.2: Forman Equation with Closure, fitting C and n (p = 2.0, q = 2.0)

Parameter 1 Hz

C 0.9894 X 10 .4

n 1.519

10 Hz

0.1538 X 10 .3

0.919

The following relationships were determined:

0.1625 x 10 -3 log z+l]

0.1 ]
(B.4)

['c+ 1] (B.5)

AKIh : 15.406 log . 1 . 7.362 log [ 0.1 J

The parameters C, n, p, and q were fit, resulting in the values given in Table B.3.

Table B.3: Forman Equation with Closure, fitting C, n, p, and q

Parameter

C

1Hz

0.5336 X 10 "3

(B.6)

10 Hz

0.2212 X 10 .2

n 1.272 -0.185

p 2.726 2.378

q 0.696 4.964

The following relationships were determined:



c lo2 1].o24,oxlO2
148

(B.7)

11_0.417 r,.
[0.1J

(B.8)

p = 1.340 log + 1 . 2.323 log[ 0.1 J (B.9)

q  10,LO.lJ

Ix* 1] ,:15.4o61o [( ).1].7.3621O Lo.1j  .11,
The Forman Equation without closure was tested; three cases were studied, fitting C

and n with p entered as 0.25 and q as 0.75, fitting C and n with p and q entered as 2.0, and

fitting C, n, p, and q. In all three cases, the value ofm was 1.0. The results for fitting C and

n with p entered as 0.25 and q as 0.75 are shown in Table B.4.

Table B.4: Forman Equation without Closure, fitting C and n (p = 0.25, q = 0.75)

Parameter 1 Hz 10 Hz

C 0.1627 X 10 .7 ,,0.3203 X 10 -6

n 3.777 2.596

The parameters were set equal to the following relationships:



C = -0.1171 IT. 1]x 036,7x10 1o L01j03.12)

[0.1J
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AKth -- 15.406 log + 1 + 7.362 log[ 0.1 J

The parameters C and n were fit while entering p and q as 2.0; the resulting values are

displayed in Table B.5.

Table B.5: Forman Equation without Closure, fitting C and n (p = 2.0, q = 2.0)

Parameter

C

n

1 Hz 10 Hz

0.6252 X 10"4 0.1118 X 10.3

1.519 0.9185

The following relationships were determined:

C---0.1896 x 10 -3 log [(f)+ 1]+
0.1196 x 10_3 log[*+ 1]

LO.X]

['_÷ 1]n2.3121o I ). o.,23logLolj

15,o6 1].7.362•LO.lJ

The parameters C, n, p, and q were fit, resulting in the values given in Table B.6.

(B.15)

(B.16)

(B.17)



Table B.6: Forman Equation without Closure, fitting C, n, p, and q

150

Parameter 1 Hz 10 Hz

C 0.4098 X 10-3 0.1521 X 10.2

n 1.272 -0.185

p 2.726 2.378

q 0.696 4.964

The following relationships were determined:

o.ox 1].o16. 1:÷ 1]
10 .2 log [ 0.1 J

03.18)

n -- 5.610 log + 1 - 0.4172 log [ 0.1 J
(13.19)

p = 1.340 log ÷ 1 + 2.323 log [ 0.1 J
(13.20)

q: 6440 (B.21)

IT ÷ 1]  :154o61o i ) 1] 7.362,o ,01,
The Hyperbolic Sine Equation was tested. The parameters C2, C3, and C 4 were fit,

while Ct was held constant at 0.5. The resulting values are shown in Table B.7.
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Table B.7: Hyperbolic Sine Equation (C_ -- o.5)

Parameter 1Hz 10 Hz

C2 4.914 4.326

C3 -1.620 -1.429

-1.639C4 -2.714

The following relationships were determined:

07301o [( )1]

92.493 log [1 - R] 03.23)

+ 30.564 log [1 - R] 03.24)

÷ 63.05g log [1 - R] (1].25)

The Sigmoidal Equation was tested fitting B, P, Q, and D. Values determined for the

equation parameters are given in Table B.8.

Table B.8: Sigmoidal Equation

1 Hz

-4.097

-0.1265

10 Hz

-1.423

-2.816

2.404

-4.635

Parameter

B

P

Q

D

2.674

-0.7475

The following relationships were determined:
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Appendix C: Interpolation Functions for Ti-6AI-4V (MA,ELI)

The parameter values and interpolation functions in this appendix were determined

for Ti-6A1-4V (MA,ELI) data taken from a study by Gangloff and Kim 9, as well as the Ti-

6AI-4V (MA,ELI) data generated during this study. The first set of interpolation functions

was utilized to interpolate the effect of stress ratio. Sincef was constant, the form of the

dependence onfis unimportant, the dependence is simply replaced by a constant. For the

moist air environment, the following relationships were determined:

B

e =

20315 11527log,1

53.27). 754

(C.1)

(C.2)

D _ 151 1].3371o  1 (C.4)

For the 1.0% NaCI solution (-500 mVscE) , the following relationships were determined:
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